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Graph ¢ = (I, E)
* nvertices V
* medges E
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cuefl,.., U}

Terminals
e Sources eV

e Terminalt €V Goal
compute maximum s — t flow
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s — t Flow

The Maximum Flow Problem
flow in = flow out

Value of Flow forallv & {s, t}

Graph G = (V, E) total flow leaving s

or entering t

* nvertices V
* medges E

Capacities : :
Capacity Constraints
cu€ef{l.. U¥ flow on e € [0, u.]

for every edge e

Terminals
e Sources eV

* Terminalt €V Goal
compute maximum s — t flow

f € RE where f, =
amount of flow on edge e



Why?

Fundamental
 Well studied with decades of extensive research

* Historically improvements yielded general techniques.

Applications

* Minimum s-t cut, bipartite matching, scheduling

* Subroutine for many problems: transportation,
partitioning, clustering, etc.

» Captures difficulty of broader problems multicommodity
flow, minimum cost flow, optimal transport, etc.

Simple “difficult” structured optimization problem

e Barrier for both continuous and discrete methods

* Captures core issues in algorithmic graph theory and
“structured optimization’
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 Well studied with decades of extensive research

* Historically improvements yielded general techniques.

Applications

* Minimum s-t cut, bipartite matching, scheduling

* Subroutine for many problems: transportation,
partitioning, clustering, etc.

» Captures difficulty of broader problems multicommodity
flow, minimum cost flow, optimal transport, etc.

Simple “difficult” structured optimization problem

e Barrier for both continuous and discrete methods

* Captures core issues in algorithmic graph theory and
“structured optimization’

Improvements yield
broad tools.

Proving ground for

optimization techniques
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S
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Open Question:

Can we achieve almost
linear m'*°") time?
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e Bipartite matchingis U = 1 case
e Same runtime for minimum s-t cut
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Running Times

S

m Exact Maximum Flow Time Unit Capacity Only?
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[BLNPSSSW20] Bipartite matching

and transhipment in
O((m+n*>)log*W)

[AMV20] Mincost flows in
time m¥3*°jog C
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Natural family of problems in

Undirected Flow Problems comvbinatorial optimization.

What should we minimize?

e Graph G = (V,E)
* Verticess,t €V

Shortest Path
. I£1lx
O(|E[)
Electric Flow
Laplacian System Solving I1f1l2
O(|E])
[STO4]
Goal
Send 1 unit of flow, f € RE, Maximum Flow _
between s and t in the _ - 10/7 Congestion yal
“best” way possible. O(IEIVIVD), O(IEI*/7) max |fe|

[LS14] [M13]
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» GraphG = (V,E), |[V|=n, |[E|=m
 Capacitiesu € {1, ..., U}*
* Sources € Vandterminalt €V

Running Times

S

“ Exact Maximum Flow Time Unit Capacity Only?

| [K73,ET75] . 3/2 2/3 Yes Iterate on paths
Augmenting e (m e ) (€.-ish) problem
Flows [GR98] é (m3/2) No
[M13] 5(m10/7 Uo/7) No
Interior point Iterate on
methods [LS14] O (m+/n) No (¢,) electric
[IPM] 5 flows.
[M16] 9) (m1°/7U1/7) No
Iterate on
something m11/8+o(1)y1/4 [LS19] S m?#/3to()y13 [LS20, Kat20]

stronger?
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Undirected Graphs e T e T O

Uses electric flows (L2 S
minimizing flows

S [CKMST11]: m*3¢°() runtime for (1-€) approximate maxflow

[Shel3, KLOS14, Peng16, Shel8, ST18]: me™ runtime for (1-€) approximate maxflow

Idea
Combine / apply these
primitives in IPMs!

How? Step 1 Step 2
Work more Build coarse £ ,-approximator (e.g. Apply iterative method to boost accuracy
directly in €. oblivious routing or congestion (e.g. gradient descent, mirror prox.)

approximator) to change representation.
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Stronger primitives?

Directed Laplacians

Solve Lx = b for . i
L = Dout(G) — A(G) . . ) .

Directed, asymmetric variant of electric flow
and Laplacians systems.

[CKPPSV16,CKPPRSV17,CKKPPRS18,AJSS19]
Can solve in nearly linear time!

PageRank, policy evaluation, stationary
distribution computation, commute times,
escape probabilities, Perron vectors in nearly
linear time!

Don’t know how to use for Don’t know how to use to
directed maximum flow speed up IPMs (&

o0
N

€P-Flows

unit s—t
flow fERE eEE

min  (If I, = ) 7elfel?

e [BCLL18, AKPS19]
* Faster algorithms using electric flow (p = 2 case)
* |nput sparsity runtimes!
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Sm OOthEd 'gp FIOWS Also suffices for mo{'%llj-ﬂow improvements.

Theorem [KPSW19] (informally)

For p = log€ n with ¢ € (0,2/3) in m1*°( time can solve

min 1122+ IFI5 = ) 7 fZ+ ) Ifl?

unit s—t
flow fERE ecE ecE
Undirected Flow problem Electric Potential Maxflow-like Potential

No edge direction constraint. Weighted energy, £, Unweighted, high-power
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Electric Flows and Laplacian Systems

s-t electric flow is the minimum energy flow, i.e. it minimizes >, 7. f2

over all flows sending one unit from s to t.
Vertex potentials: @ = L'(1 -1 ) for L= B'R™B, and f = R*BO.

S 1./9 t

<4/ &
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Madry 16 IPM Framework*

Algorithm state:

. s-t flow f of value v
Forward weights w " >= 1 for each edge e
Backwards weights w " >=1 for each edge e

Potential: Weighted Logarithmic Barrier

: _ + B -
s—t}%lv{llf of W (f) = zeEE(WB log(ue — fe) + we log(u, + 1))

value { T T

Penalizes saturating Penalizes saturating
forward capacity. reverse capacity.

Linear constraint: BT f = v - y,
* Not exactly the framework but close.
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Following Minimizers of the Log Barrier

min V,(f) = - ) _ w log(ue — £2) + wZ log (e + £2))

BTf=vxst

- Progress step: Add multiple of s-t electric flow with resistances
given by Hessian of V_(f) to increase v to v+o.

. Centering step: move from approximate minimizer to exact
minimizer without changing value of v using electric flows.

. Goal: Change weights to allow for larger progress steps (greater
than m™)

. Invariant: Need to maintain Y _p(ws + w. ) < O(m)
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Congestion Prevents Progress

- When is the progress step forced to be small?

- Intuitively when the s-t electric flow has large flow on some edges e
compared to their residual capacities.

. [CKMST11,M13,M16]: When electric flow is congested on an edge e,
increasing resistance of edge e reduces electric flow onit.

- Increase resistance by increasing weights we+ and w_ .

- Analysis: Track electric flow energy as a potential function.

How to improve?
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New Approach: Energy Maximization

. New energy maximization framework for computing weight changes
- [M16] combinatorial approach -- doubles resistances of edges that

have large energy / electric flow.
- Our approach: solve weight budgeted energy maximization as its

owh optimization problem!
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Weight Increases via Energy Maximization

* Let ¢, be weight increase needed to increase 7, by 1
* Let W be weight change budget

* Maximum energy increase possible with weight change budget W':

: 2 . 5
max energy = max min = _min max
”C')"’“lSW rtr (f) “CT’“;[SW BTf=XS,t”f“r+r,'2 BTf=XS,t ”Cr,lllsl ”f”r+r',2

' 2 2
min 4+ max
BTf=xs,t”f“r’2 IICr'II1SW“f”r,’2
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Weight Increases via Energy Maximization

* Let ¢, be weight increase needed to increase 7, by 1
* Let W be weight change budget

 Maximum energy increase possible with weight change budget W'

: 2 - 2
max energy = Imax min = _min max
lcrrllysw rer' () lcrillisw BTf=xS,t”f I, BT f=yst ||Crr||1s1”f s 2

- 2 2
= min + max

An undirected flow

= min ||f||12~2 + WHC_I/szi problem!!!!

BTf=Xs,t
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Solving Energy Maximization Problem

Maximization Problem

= - 2 =127~
max ener = _Imin
”CT’”]_SW gYT+r’ (f) BTf=XS’t”f“r'2 + W”C f”oo

Exact solve: Forr=0and C = (1/ue)2, becomes undirected maxflow!



Solving Energy Maximization Problem

’ — 1 2 -1/2 2
ey e U e LI W |c=H=F

Exact solve: Forr=0and C = (1/ue)2, becomes undirected maxflow!
Approximate solve: change «~ — p = ,/logm and solve using smoothed 22—
Zp norm flow result of [KPSW19].

Theorem [KPSW19] (informally)

For p = log€ n with ¢ € (0,2/3) in m*°( time can solve

min, 122+ IFI5 = D 7 f2+ D 117

unit s—
flow feERE ecE eck
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Derivation of Taking Steps via Electric Flows

V(f) = = > —we log(1 — fe) — we log(1+ fe)
fv = min BT f:UXst V(f)

Say that we are adding a residual flow f which routes § s-t units.
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Derivation of Taking Steps via Electric Flows

V(f) = = > —we log(1 — fe) — we log(1+ fe)
fo =mingr,_, . V(f)

Say that we are adding a residual flow f which routes § s-t units.
KKT conditions tell us that y such that By = vv(f).

Therefore is are voltages ¢ such that
Bé =VV(f+f) - VV(f)

/ _ we o _we |, we W
]-_fe_fe 1= fe 1_fe_fe 1—fe

voltages

w;f We A
= ((1 — f.)? + (1+ fe)z) fe Approximately an electric flow!
l |

resistances
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Error of Electric Flow Approximation
By =VV(f+f)—VV({)

_ ’wér B wf{ " We B We
]-_fe_fe 1—Je l_fe_fe 1—fe

(2 2
(1_fe)2 (1+fe)2 ’
Error of the = (and thus centrality error) is 2nd order, i.e.

((1fe)3 " (1+f )fe

Centrality in an IPM is the 22 norm of this w.r.t. the resistances

f 1) 2 where ‘f‘
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Congestion, Progress, and Correction
_ .
A Pe ™ win(—1,17£)
The flow f + f is feasible if ||p|/oc < 1.
However, the error is ||pll; -- reason for “correction” steps in the IPM.

Therefore, we can only take steps if ||p||s < 1/10.
Problem: How to resolve this difference between ||pll and ||p[/4?

Solution: Don’t augment via electric flows, i.e. don’t force fto be an
electric flow!
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Maintaining Centrality via Divergences

Goal: Augment by a flow f that doesn’t cause centrality error via
approximations, like the electric flow did.

Set f to be the minimizer of the Bregman dlvergence of barrier V(f).
f =argmingr, ; V(f+f)-V(f)—f TVV(f)
KKT conditions tell us that there are potentials ¢ such that
By =VV(f+f)—VV(f)
If f =f was already on the central path, then By = VV ()
Adding gives us B(y + ¢) = VV(f + f), so f + f is central again!
Intuition: Divergence is 2nd order, approximated by electric energy!
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Step 1: Precondition the graph G.

Step 2: For m*3*° steps do
a. Perform energy maximization on the divergence objective.
b. Change weights accordingly, and augment flow.
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Full Algorithm for m*3*°l1) Time Maxflow

Step 1: Precondition the graph G.

Step 2: For m*3*° steps do
a. Perform energy maximization on the divergence objective.
b. Change weights accordingly, and augment flow.

Step 3: When m¥3*°(1) ynits left, apply augmenting paths to finish.

Runtime: By extension of the { Ep norm flow result of [KPSW19], step 2
can be solved in m**°) per |terat|on so m*3*() total time.

Weight change bound: Trade off size of progress steps, amount of flow
left, and amount of weight change.
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Energy Maximization in Almost Linear Time

Theorem [KPSW] (informally)
For p = log® n with ¢ € (0,2/3) in can

Maximization Problem

||C,r.,r1||al)éw energyy(f) solve in almost linear time:

: 2 ~1/2 £||% ' 2 p

L If 172 + W([C~Y2f] in A fllze + [ f 1l

- flow fERE
Issue Solution
L VS s p = y/log m is good enough
Weight increase vs flow problem | Gradient gives weight changes
112 vs || - |15 Reducible by line search
C—Y2F ysif Set C = | and hope?

Using iterative refinement [AKPS19, KPSW19], can solve divergence
minimization problem using m°?* instances of Ez-fp norm flow
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Parameter Tradeoffs: m*/3 vs m1%/8

3/2-c

c is a small constant -- we are aiming for m runtime.

Lemma: If there are F units of residual flow, and we want to route OF

units, then the congestion vector satisfies [|pll2 < 6v/m.
Note: For & = m™, this recovers standard IPMs. We want O = m™*<.

Weight change lemma: If F >= m¥/?¢and & = m™*¢, then with weight
increase W we can ensure ||p|le < m%/VW.

For W = O(m*) we can guarantee||p|| < 1/10: sufficient for
divergence-based method.

Total change over mY/2¢ IPM steps = m¥/?¢x W = m¥2*3¢ <= m for ¢ = %.

Runtime = m3/2¢ = m*53,
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Parameter Tradeoffs: m%3 vs m11/¢ o

Lemma: If there are F units of residual flow, and we want to route OF
units, then the congestion vector satisfies llpll2 < 6v/m.

Weight change lemma: If F >= m¥?¢and & = m™”*¢, then with weight
increase W we can ensure [[pllc <m*/vW,

Choices: © = m™*and W = O(m®®) gives ||p|lz < m¢ and ||p||sc < m ¢ /100.
Therefore, we have [|plls < (/lpll2]lpll)'/* < 1/10.

Total weight increase over mY%¢ steps is m¥%¢ x W <= m¥2*¢ <= m for ¢
= 1/10. Gives runtime m¥2€ = m7’/>= m'4. Larger than m'¥/8= m137>.

m
[LS19] need additional weight reduction tricks to get m*%/2,
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Future Directions / Open Problems

Better Primitives?
. Smoothed lp flows for weighted graphs
Better Methods?

. Can we go beyond IPMs?
. Can we more directly use smoothed 12-Ip flows?

. Achieving a m!>log U time algorithm.
Approximation algorithms?

- Generalization: For any € > 0, can compute emU-additive
approximate maxflow in time m*)/g1/2,

. g-approximate maxflow in m**°M/el/2 time?
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The End

Questions?

Contact Info:
* email: yangpliu@stanford.edu
* website: yangpliu.github.io
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