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s — t Flow

The Maximum Flow Problem
flow in = flow out

Value of Flow forallv & {s, t}

Graph G = (V, E) total flow leaving s

or entering t

* nvertices V
* medges E

Capacities : :
Capacity Constraints
cu€ef{l,.. U¥ flow on e € [0, u.]

for every edge e

Terminals
e Sources eV

. f € RE where f, =
e Terminalt €V Goal amount of flow on edge e

compute maximum s — t flow
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Fundamental
* Well studied with decades of extensive research

* Historically improvements yielded general techniques.

Applications
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flow, minimum cost flow, optimal transport, etc.

Simple “difficult” structured optimization problem

e Barrier for both continuous and discrete methods

* Captures core issues in algorithmic graph theory and
“structured optimization’
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Applications

* Minimum s-t cut, bipartite matching, scheduling

* Subroutine for many problems: transportation,
partitioning, clustering, etc.

* Captures difficulty of broader problems multicommodity
flow, minimum cost flow, optimal transport, etc.

Simple “difficult” structured optimization problem

e Barrier for both continuous and discrete methods

* Captures core issues in algorithmic graph theory and
“structured optimization’

Improvements yield
broad tools.

Proving ground for

optimization techniques
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» GraphG = (V,E), |[V|=n, |[E|=m
 Capacitiesu € {1, ..., U}
* Sources € Vandterminalt €V

Running Times

S

m Exact Maximum Flow Time Unit Capacity Only?

[K73,ET75] min (m3/2, mn2/3) Yes
[GRI8] é (m3/2) No
[M13] 6(m10/7U10/7) No
[LS14] O (my/n) No
[M16] O (m10/7U1/7) No
Use 0 to hide log ™ (nU /), algorthm, e o appeatance of U. (013]

10/7 =3/2—-1/14 Ou r Res UIt * Bipartite matchingis U = 1 case

1}48==3%2__1%8 m 11 /8+o(1 )U 1/4  Same runtime for minimum s-t cut
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Natural family of problems in

Undirected Flow Problems combinatorial optimization.

What should we minimize?

* Graph G = (V,E)
* Verticess,t €V

Shortest Path
. I£1lx
O(|E[)
Electric Flow
Laplacian System Solving £l
O(|E])
[STO4]
Goal
Send 1 unit of flow, f € RE, Maximum Flow _
between s and t in the _ - 10/7 Congestion £ |
“best” way possible. O(IEIVIV]), O(IEI*/7) max |fe|

[LS14] [M13]
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» GraphG = (V,E), |[V|=n, |[E|=m
 Capacitiesu € {1, ..., U}
* Sources € Vandterminalt €V

Running Times

S

“ Exact Maximum Flow Time Unit Capacity Only?

| [K73,ET75] . 3/2 2/3 Yes Iterate on paths
Augmenting e (m e ) (€1-ish) problem
Flows [GRI8] é (m3/2) No
[M13] 5(m10/7U10/7) No
Interior point Iterate on
methods [LS14] O (m+/n) No (£,) electric
[IPM] 5 flows.
[M16] 9) (m1°/7U1/7) No
Iterate on
something Our Result

stronger?
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Undirected Graphs e T e T O

Uses electric flows (L2 S
minimizing flows

S [CKMST11]: m*3¢°() runtime for (1-¢) approximate maxflow

[Shel3, KLOS14, Pengl6, Shel8, ST18]: me™ runtime for (1-¢) approximate maxflow

Idea Problem
Combine / apply these 5-years and no luck ®

primitives in IPMs! IPM are £, need dual.

How? Step 1 Step 2
Work more Build coarse £ ,-approximator (e.g. Apply iterative method to boost
directly in €. oblivious routing or congestion accuracy (e.g. gradient descent, mirror

approximator) to change representation. prox.)



Stronger primitives?



Stronger primitives?

Directed Laplacians

Solve Lx = b for . i
L= Dout(G) — A(G) . . ) .

Directed, asymmetric variant of electric flow
and Laplacians systems.

[CKPPSV16,CKPPRSV17,CKKPPRS18,AJSS19]
Can solve in nearly linear time!

PageRank, policy evaluation, stationary
distribution computation, commute times,
escape probabilities, Perron vectors in nearly
linear time!




Stronger primitives?

Directed Laplacians £,-Flows

L=D,;:(G)—A(G) . . } = unit s—t r.p Z cle
flow fERE eEE

Directed, asymmetric variant of electric flow * [BCLL18, AKPS19]
and Laplacians systems. * Faster algorithms using electric flow (p = 2 case)
[CKPPSV16,CKPPRSV17,CKKPPRSlS,AJSSlg] ° |nput Sparsity runtimes!
Can solve in nearly linear time!
PageRank, policy evaluation, stationary
distribution computation, commute times,
escape probabilities, Perron vectors in nearly
linear time!



Stronger primitives?

Directed Laplacians

Solve Lx = b for . i
L= Dout(G) — A(G) . . ) .

Directed, asymmetric variant of electric flow
and Laplacians systems.

[CKPPSV16,CKPPRSV17,CKKPPRS18,AJSS19]
Can solve in nearly linear time!

PageRank, policy evaluation, stationary
distribution computation, commute times,
escape probabilities, Perron vectors in nearly
linear time!

Don’t know how to use for Don’t know how to use to
directed maximum flow speed up IPMs (&

o0
N

€P-Flows

unit s—t
flow fERE eEE

min  (If I, = ) 7elfel?

e [BCLL18, AKPS19]
* Faster algorithms using electric flow (p = 2 case)
* |nput sparsity runtimes!
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Strategy

Step O: Preprocessing Step 1: Interior Point Method

* Assume WLOG graph is undirected * |teratively improve a s-t flow
(i.e. fo € [—UuUp, u.]foralle € E)

* Precondition: add some edges
fromstot

* Improve objective (send more flow)

» Stay away from constraints (don’t
saturate edges)
* Route until residual capacity is m”"

Y L * Pick potential to trade off each
and get exact solution in O(m~™")

Step 2: Magic
Do better than naive O (/m) iteration and 0 (m3/?) runtime bound.
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Madry 16 IPM Framework*

Algorithm State

* Feasible s-t flow f € RE of value v
* Forward weights w* € R~

* Reverse weights w~ € RE

Potential: Weighted Logarithmic Barrier

. _ . B B
s—t flow f of W (f) = ZBEE(W«B log(ue — fe) + we log(ue + fe))

value Tv T T

Penalizes saturating Penalizes saturating

| | . forward capacity. reverse capacity.
Linear constraint: B' f = v - x5

* Not exactly the framework but close.
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Following Minimizers of the Log Barrier

min V,(f) = - ) w log(ue — £2) + w; log (e + £2))

BTf=v‘Xs,t

. Centering step: move from approximate minimizer to exact
minimizer without changing value of v using electric flows.

- Progress step: Add multiple of s-t electric flow with resistances
given by Hessian of V_(f) to increase v to v+o.

- Magic: Change weights so progress steps can be larger!
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Congestion Prevents Progress

- When is the progress step forced to be small?

- Intuitively when the s-t electric flow has large flow on some edges e
compared to their residual capacities.

. [CKMST11,M13,M16]: When electric flow is congested on an edge e,
increasing resistance of edge e reduces electric flow on it.

- Increase resistance by increasing weights we+ and w_.

. Analysis: Track electric flow energy as a potential function.

How to improve?
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New Approach: Energy Maximization

- New energy maximization framework for computing weight changes
- [M16] combinatorial approach -- doubles resistances of edges that

have large energy / electric flow.
- Our approach: solve weight budgeted energy maximization as its

owhn optimization problem!
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* Let ¢, be weight increase needed to increase 7, by 1
* Let W be weight change budget

 Maximum energy increase possible with weight change budget W'

: 2 . 5
max energy = max min = _min max
”C')"’“lSW rtr (f) “CT’“;[SW BTf=XS,t”f“r+r,'2 BTf=XS,t ”Cr,lllsl ”f”r+r',2

' 2 2
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Weight Increases via Energy Maximization

* Let ¢, be weight increase needed to increase 7, by 1
* Let W be weight change budget

 Maximum energy increase possible with weight change budget W'

: 2 - 2
max energy = Imax min = _min max
lcrrllysw rer' () lcrillisw BTf=xS,t”f I, BT f=yst ||Crr||1s1”f s 2

- 2 2
= min + max

An undirected flow

= min ||f||12~2 + WHC_I/szi problem!!!!

BTf=Xs,t



Solving Energy Maximization Problem

o : 2 ~1/2 £||%
max ener = min + WIC
ICrrlly<sw 8Yr+r' () BTf=)(s,t”f”T’2 ” f“°°
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Exact Solve
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Solving Energy Maximization Problem

max ener ’ —
e gYr+r' ()

Exact Solve “Approximate” Solve

e Pickr =0 * Perform bounded weight increase for
bound on ¢,,-norm of congestion.
* Pick c = 1/u?

* Take augmenting electric flow step

* |s undirected maximum flow... * Change weights to “center” highl
congested edges (i.e. improve &J

* Perform standard centering.
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Sm OOthEd 'gp FIOWS Also suffices for mo{'%llj-ﬂow improvements.

Theorem [KPSW19] (informally)

For p = log€ n with ¢ € (0,2/3) in m1*°( time can solve

min 1122+ IFI5 = ) 7 fZ+ ) Ifel?

unit s—t
flow fERE ecE ecE
Undirected Flow problem Electric Potential Maxflow-like Potential

No edge direction constraint. Weighted energy, £, Unweighted, high-power
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How to maximizing energy efficiently?

Y Theorem [KPSW] (informally)
Maximization Problem e — ;
For p = log® n with ¢ € (0,2/3) in can
max = energy, ., (f) solve in almost linear time:

ICrrll =W

: = 2 ! p

in |If I, + wllc=>f]|, min I£12, + I£115
s,t

unit s—
flow fERE

Problem Solution
* |l lle versus || - ||, for p = log“n  p =lognis close enough for approx
e Resistances versus flow e Standard primal-dual tricks
e |- I* versus ||| * Reducible by binary search
o C_l/zf versus f @  cee see oo

 Pick C = I and hope for the best?
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Weight Reductions for Handling Unit Ip Flows

Weighted Energy Max Algorithm Unweighted Energy Max Algorithm

* Perform bounded weight increase for
bound on £ ,-norm of congestion.

* Take augmenting electric flow step

. . Undo un-necessary weight changes
* Change weights to “center” highly

congested edges (i.e. improve £,)
: 11/8+0(1)171/4
* Perform standard centering. Tradeoff yields m /8+o(1)y1/

No potential function!

Note

Can get m7/5t°()yy2/5 gyen without this.




Recent Advances ‘n [LS19] Energy Maximizat:o.
Flow Problems and Maximum Flow

Part 1 Part 2

Directed Maximum Flow
ml11/8+o(1)y1/4
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Future Directions / Open Problems

Better Primitives?
. Smoothed lp flows for weighted graphs
Better Methods?

. Can we go beyond IPMs?
. Can we completely leave |12 as with approximate maxflows?
. Can we more directly use smoothed I2-Ip flows?\

Better Combinatorics?
. Achieving a (log U) dependence. Regularized Newton Steps

[AMV20] Mincost flows in

Divergence minimizing flows

New Result! [LS20]

time m*3*°jog C

m4l3+o(1)U1l3




Faster Energy Maximization for
Faster Maximum Flow

arXiv:1910.14276

The End

Questions?

Contact Info:
* email: yangpliu@stanford.edu
e website: yangpliu.github.io

Yang P. Liu Aaron Sidford



