Faster Energy Maximization for Faster Maximum Flow

Yang P. Liu and Aaron Sidford

arXiv : 1910.14276

Contact Info:

- Email: yangpliu@stanford.edu
- Website: yangpliu.github.io

Talk Outline

Recent Advances in Flow Problems

Part 1

Talk Outline

Recent Advances in Flow Problems

Part 1

[LS19] Energy Maximization and Maximum Flow

Part 2

Graph G = (V, E)

- *n* vertices *V*
- *m* edges *E*

Capacities

• $u \in \{1, \dots, U\}^E$

Terminals

- Source $s \in V$
- Terminal $t \in V$

Graph G = (V, E)

- *n* vertices *V*
- *m* edges *E*

Capacities

• $u \in \{1, \dots, U\}^E$

Terminals

- Source $s \in V$
- Terminal $t \in V$

Graph G = (V, E)

- *n* vertices *V*
- *m* edges *E*

Capacities

• $u \in \{1, \dots, U\}^E$

Terminals

- Source $s \in V$
- Terminal $t \in V$

 $\frac{Flow}{f \in \mathbb{R}^{E} \text{ where } f_{e} = \\ \text{amount of flow on edge } e \\ \end{cases}$

Graph G = (V, E)

- *n* vertices *V*
- *m* edges *E*

Capacities

• $u \in \{1, \dots, U\}^E$

Terminals

- Source $s \in V$
- Terminal $t \in V$

 $\frac{\text{Goal}}{\text{compute maximum }s \rightarrow t \text{ flow}}$

 $\frac{Flow}{f \in \mathbb{R}^{E} \text{ where } f_{e} = \\ \text{amount of flow on edge } e \\ \end{cases}$

Why?

Fundamental

- Well studied with decades of extensive research
- Historically improvements yielded general techniques.

Applications

- Minimum *s*-*t* cut, bipartite matching, scheduling
- Subroutine for many problems: transportation, partitioning, clustering, etc.
- Captures difficulty of broader problems multicommodity flow, minimum cost flow, optimal transport, etc.

Simple "difficult" structured optimization problem

- Barrier for both continuous and discrete methods
- Captures core issues in algorithmic graph theory and "structured optimization"

Why?

Fundamental

- Well studied with decades of extensive research
- Historically improvements yielded general techniques.

Applications

- Minimum *s*-*t* cut, bipartite matching, scheduling
- Subroutine for many problems: transportation, partitioning, clustering, etc.
- Captures difficulty of broader problems multicommodity flow, minimum cost flow, optimal transport, etc.

Simple "difficult" structured optimization problem

- Barrier for both continuous and discrete methods
- Captures core issues in algorithmic graph theory and "structured optimization"

Improvements yield broad tools.

Why?

Fundamental

- Well studied with decades of extensive research
- Historically improvements yielded general techniques.

Applications

- Minimum *s*-*t* cut, bipartite matching, scheduling
- Subroutine for many problems: transportation, partitioning, clustering, etc.
- Captures difficulty of broader problems multicommodity flow, minimum cost flow, optimal transport, etc.

Simple "difficult" structured optimization problem

- Barrier for both continuous and discrete methods
- Captures core issues in algorithmic graph theory and "structured optimization"

Improvements yield broad tools.

Proving ground for optimization techniques

- Graph G = (V, E), |V| = n, |E| = m• Capacities $u \in \{1, ..., U\}^{E}$
- Source $s \in V$ and terminal $t \in V$

- Graph G = (V, E), |V| = n, |E| = m
 Capacities u ∈ {1, ..., U}^E
- Source $s \in V$ and terminal $t \in V$

Authors	Exact Maximum Flow Time	Unit Capacity Only?
[K73,ET75]	$\min\left(m^{3/2},mn^{2/3} ight)$	Yes
[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No
[M13]	$\widetilde{O}(m^{10/7} U^{10/7})$	No
[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	No
[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No

Use \tilde{O} to hide $\log^{O(1)}(nU/\epsilon)$.

There is a O(mn) strongly polynomial time algorithm, i.e. no appearance of U. [O13]

- Graph G = (V, E), |V| = n, |E| = m
- Capacities $u \in \{1, ..., U\}^E$
- Source $s \in V$ and terminal $t \in V$

Authors	Exact Maximum Flow Time	Unit Capacity Only?
[K73,ET75]	$\min\left(m^{3/2},mn^{2/3} ight)$	Yes
[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No
[M13]	$\widetilde{O}(m^{10/7} U^{10/7})$	No
[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	No
[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No

Use \tilde{O} to hide $\log^{O(1)}(nU/\epsilon)$.

There is a O(mn) strongly polynomial time algorithm, i.e. no appearance of U. [O13]

- Graph G = (V, E), |V| = n, |E| = m
- Capacities $u \in \{1, ..., U\}^E$
- Source $s \in V$ and terminal $t \in V$

Authors	Exact Maximum Flow Time	Unit Capacity Only?
[K73,ET75]	$\min\left(m^{3/2},mn^{2/3}\right)$	Yes
[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No
[M13]	$\widetilde{O}(m^{10/7} U^{10/7})$	No
[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	No
[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No

Use \tilde{O} to hide $\log^{O(1)}(nU/\epsilon)$.

There is a O(mn) strongly polynomial time algorithm, i.e. no appearance of U. [O13]

- 10/7 = 3/2 1/14
- 11/8 = 3/2 1/8
- 4/3 = 3/2 1/6

- Graph G = (V, E), |V| = n, |E| = m
- Capacities $u \in \{1, ..., U\}^E$
- Source $s \in V$ and terminal $t \in V$

Authors	Exact Maximum Flow Time	Unit Capacity Only?
[K73,ET75]	$\min\left(m^{3/2},mn^{2/3} ight)$	Yes
[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No
[M13]	$\widetilde{O}(m^{10/7} U^{10/7})$	No
[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	No
[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No

Use \tilde{O} to hide $\log^{O(1)}(nU/\epsilon)$.

There is a O(mn) strongly polynomial time algorithm, i.e. no appearance of U. [O13]

- 10/7 = 3/2 1/14
- 11/8 = 3/2 1/8
- 4/3 = 3/2 1/6

- Bipartite matching is U = 1 case
- Same runtime for minimum *s*-*t* cut

Natural family of problems in combinatorial optimization.

- Graph G = (V, E)
- Vertices $s, t \in V$

- Graph G = (V, E)
- Vertices $s, t \in V$

Goal Send 1 unit of flow, $f \in \mathbb{R}^{E}$, between *s* and *t* in the "best" way possible. Natural family of problems in combinatorial optimization.

What should we minimize?

- Graph G = (V, E)
- Vertices $s, t \in V$

<u>Goal</u> Send 1 unit of flow, $f \in \mathbb{R}^{E}$, between s and t in the "best" way possible.

Maximum Flow

 $ilde{O}(|E|\sqrt{|V|})$, $ilde{O}(|E|^{10/7})$ [LS14] [M13] $\frac{\text{Congestion}}{\max_{e \in E} |f_e|}$

 $\|f\|_{\infty}$

Natural family of problems in combinatorial optimization.

What should we minimize?

- Graph G = (V, E)
- Vertices $s, t \in V$

t

<u>Goal</u> Send 1 unit of flow, $f \in \mathbb{R}^{E}$, between s and t in the "best" way possible.

Maximum Flow

Shortest Path

 $\tilde{O}(|E|)$

 $\tilde{O}(|E|\sqrt{|V|})$, $\tilde{O}(|E|^{10/7})$ [LS14] [M13]

Natural family of problems in combinatorial optimization.

What should we minimize?

 $\|f\|_1$

 $\frac{\text{Congestion}}{\max_{e \in E} |f_e|}$

 $\|f\|_{\infty}$

- Graph G = (V, E)
- Vertices $s, t \in V$

Goal Send 1 unit of flow, $f \in \mathbb{R}^{E}$, between s and t in the "best" way possible. Natural family of problems in combinatorial optimization.

What should we minimize?

 $\|f\|_{1}$

 $\|f\|_2$

Maximum Flow

Shortest Path

 $\tilde{O}(|E|)$

Electric Flow

Laplacian System Solving

 $\tilde{O}(|E|)$

[ST04]

 $\tilde{O}(|E|\sqrt{|V|})$, $\tilde{O}(|E|^{10/7})$ [L**S**14] [M13] $\frac{\text{Congestion}}{\max_{e \in \mathbf{E}} |f_e|}$

 $\|f\|_{\infty}$

- Graph G = (V, E), |V| = n, |E| = m• Capacities $u \in \{1, ..., U\}^{E}$
- Source $s \in V$ and terminal $t \in V$

- Graph G = (V, E), |V| = n, |E| = m• Capacities $u \in \{1, ..., U\}^{E}$
- Source $s \in V$ and terminal $t \in V$

Authors	Exact Maximum Flow Time	Unit Capacity Only?
[K73,ET75]	$\min\left(m^{3/2},mn^{2/3} ight)$	Yes
[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No
[M13]	$\widetilde{O}(m^{10/7}U^{10/7})$	No
[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	Νο
[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No

- Graph G = (V, E), |V| = n, |E| = m• Capacities $u \in \{1, ..., U\}^{E}$
- Source $s \in V$ and terminal $t \in V$

	Authors	Exact Maximum Flow Time	Unit Capacity Only?	
Augmenting	[K73,ET75]	$\min\left(m^{3/2},mn^{2/3} ight)$	Yes	lterate on paths (ℓ₁-ish) problem
Flows	[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No	
	[M13]	$\widetilde{O}(m^{10/7}U^{10/7})$	No	
	[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	No	
	[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No	

- Graph G = (V, E), |V| = n, |E| = m• Capacities $u \in \{1, ..., U\}^{E}$
- Source $s \in V$ and terminal $t \in V$

	Authors	Exact Maximum Flow Time	Unit Capacity Only?	
Augmenting	[K73,ET75]	$\min\left(m^{3/2},mn^{2/3}\right)$	Yes	lterate on paths (ℓ₁-ish) problem
Flows	[GR98]	$ ilde{O}\left(m^{3/2} ight)$	No	
Interior point	[M13]	$\widetilde{O}(m^{10/7} U^{10/7})$	No	lterate on
methods	[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	No	(ℓ_2) electric
	[M16]	$ ilde{O}\left(m^{10/7}U^{1/7} ight)$	No	jiows.

- Graph G = (V, E), |V| = n, |E| = m
- Capacities $u \in \{1, ..., U\}^E$
- Source $s \in V$ and terminal $t \in V$

	Authors	Exact Maximum Flow Time	Unit Capacity Only?	
Augmenting	[K73,ET75]	$\min\left(m^{3/2},mn^{2/3} ight)$	Yes	lterate on paths (ℓ₁-ish) problem
Flows	[GR98]	$ ilde{O}\left(m^{3/2} ight)$	Νο	(-1, -
Interior point	[M13]	$\widetilde{O}(m^{10/7}U^{10/7})$	Νο	lterate on
methods	[LS14]	$ ilde{O}\left(m\sqrt{n} ight)$	Νο	(ℓ_2) electric
	[M16]	$\tilde{O}\left(m^{10/7}U^{1/7} ight)$	No	jiows.

Iterate on something stronger?

 $\frac{\epsilon \text{-Approximate Flow}}{\text{feasible } s \rightarrow t \text{ flow of value } (1 - \epsilon) OPT}$

 $\label{eq:eq:expression} \frac{\epsilon\text{-Approximate Flow}}{\text{feasible }s \to t \text{ flow of value }(1-\epsilon)OPT}$

[CKMST11]: $m^{4/3} \varepsilon^{-O(1)}$ runtime for (1- ε) approximate maxflow

 $\frac{\epsilon \text{-Approximate Flow}}{\text{feasible } s \rightarrow t \text{ flow of value } (1 - \epsilon) OPT}$

Uses electric flows (L2

minimizing flows)

[CKMST11]: $m^{4/3}\varepsilon^{-O(1)}$ runtime for (1- ε) approximate maxflow

 $\label{eq:eq:expression} \frac{\epsilon\text{-Approximate Flow}}{\text{feasible }s \to t \text{ flow of value }(1-\epsilon)OPT}$

Uses electric flows (L2 minimizing flows)

[CKMST11]: $m^{4/3}\varepsilon^{-O(1)}$ runtime for (1- ε) approximate maxflow

[She13, KLOS14, Peng16, She18, ST18]: m ε^{-1} runtime for (1- ε) approximate maxflow

 $\frac{\epsilon \text{-Approximate Flow}}{\text{feasible } s \rightarrow t \text{ flow of value } (1 - \epsilon) OPT}$

Uses electric flows (L2 minimizing flows)

[CKMST11]: $m^{4/3}\varepsilon^{-O(1)}$ runtime for (1- ε) approximate maxflow

[She13, KLOS14, Peng16, She18, ST18]: m ε^{-1} runtime for (1- ε) approximate maxflow

 $\frac{\text{How?}}{\text{Work more}}$ directly in ℓ_{∞} .

<u>Step 1</u>

Build coarse ℓ_{∞} -approximator (e.g. oblivious routing or congestion approximator) to change representation.

<u>Step 2</u>

Apply iterative method to boost accuracy (e.g. gradient descent, mirror prox.)

 $\label{eq:eq:expression} \frac{\epsilon\text{-Approximate Flow}}{\text{feasible }s \to t \text{ flow of value }(1-\epsilon)OPT}$

Uses electric flows (L2 minimizing flows)

[CKMST11]: $m^{4/3}\varepsilon^{-O(1)}$ runtime for (1- ε) approximate maxflow

[She13, KLOS14, Peng16, She18, ST18]: m ε^{-1} runtime for (1- ε) approximate maxflow

Idea Combine / apply these primitives in IPMs!

<u>Step 1</u>

Build coarse ℓ_{∞} -approximator (e.g. oblivious routing or congestion approximator) to change representation. **Problem** 5-years and no luck $\ensuremath{\mathfrak{S}}$ IPM are ℓ_2 , need dual.

<u>Step 2</u>

Apply iterative method to boost accuracy (e.g. gradient descent, mirror prox.)

How? Work more directly in ℓ_{∞} .

Directed Laplacians

Solve
$$Lx = b$$
 for
 $L = D_{out}(G) - A(G)$
 $L = b$

- Directed, asymmetric variant of electric flow and Laplacians systems.
- [CKPPSV16,CKPPRSV17,CKKPPRS18,AJSS19]
- Can solve in nearly linear time!
- PageRank, policy evaluation, stationary distribution computation, commute times, escape probabilities, Perron vectors in nearly linear time!

Directed Laplacians

Solve
$$Lx = b$$
 for
 $L = D_{out}(G) - A(G)$
 $L = b$

- Directed, asymmetric variant of electric flow and Laplacians systems.
- [CKPPSV16,CKPPRSV17,CKKPPRS18,AJSS19]
- Can solve in nearly linear time!
- PageRank, policy evaluation, stationary distribution computation, commute times, escape probabilities, Perron vectors in nearly linear time!

ℓ_p -Flows

$$\min_{\substack{unit \ s-t \\ flow \ f \in \mathbb{R}^E}} \|f\|_{r,p}^p = \sum_{e \in E} r_e |f_e|^p$$

- [BCLL18, AKPS19]
- Faster algorithms using electric flow (p = 2 case)
- Input sparsity runtimes!

Directed Laplacians

Solve
$$Lx = b$$
 for
 $L = D_{out}(G) - A(G)$

- Directed, asymmetric variant of electric flow and Laplacians systems.
- [CKPPSV16,CKPPRSV17,CKKPPRS18,AJSS19]
- Can solve in nearly linear time!
- PageRank, policy evaluation, stationary distribution computation, commute times, escape probabilities, Perron vectors in nearly linear time!

Don't know how to use for directed maximum flow

b

=

Don't know how to use to speed up IPMs 😕

 ℓ_p -Flows

 $\min_{\substack{unit \ s-t \\ flow \ f \in \mathbb{R}^E}} \|f\|_{r,p}^p = \sum_{e \in E} r_e |f_e|^p$

- [BCLL18, AKPS19]
- Faster algorithms using electric flow (p = 2 case)
- Input sparsity runtimes!
Recent Advances in Flow Problems

Part 1

Part 1

[LS19] Energy Maximization and Maximum Flow

Part 2

 $\frac{\text{Directed Maximum Flow}}{m^{11/8+o(1)}U^{1/4}}$

Step 0: Preprocessing

- Assume WLOG graph is undirected (i.e. $f_e \in [-u_e, u_e]$ for all $e \in E$)
- Precondition: add some edges from s to t
- Route until residual capacity is m^{η} and get exact solution in $\tilde{O}(m^{1+\eta})$

Step 0: Preprocessing

- Assume WLOG graph is undirected (i.e. $f_e \in [-u_e, u_e]$ for all $e \in E$)
- Precondition: add some edges from s to t
- Route until residual capacity is m^{η} and get exact solution in $\tilde{O}(m^{1+\eta})$

Step 1: Interior Point Method

- Iteratively improve a *s*-*t* flow
- Improve objective (send more flow)
- Stay away from constraints (don't saturate edges)
- Pick potential to trade off each

Step 0: Preprocessing

- Assume WLOG graph is undirected (i.e. $f_e \in [-u_e, u_e]$ for all $e \in E$)
- Precondition: add some edges from s to t
- Route until residual capacity is m^{η} and get exact solution in $\tilde{O}(m^{1+\eta})$

Step 1: Interior Point Method

- Iteratively improve a *s*-*t* flow
- Improve objective (send more flow)
- Stay away from constraints (don't saturate edges)
- Pick potential to trade off each

Step 2: Magic

Do better than naïve $\tilde{O}(\sqrt{m})$ iteration and $\tilde{O}(m^{3/2})$ runtime bound.

Algorithm State

- Feasible *s*-*t* flow $f \in \mathbb{R}^E$ of value v
- Forward weights $w^+ \in \mathbb{R}^E$
- Reverse weights $w^- \in \mathbb{R}^E$

Algorithm State

- Feasible *s*-*t* flow $f \in \mathbb{R}^E$ of value v
- Forward weights $w^+ \in \mathbb{R}^E$
- Reverse weights $w^- \in \mathbb{R}^E$

Potential: Weighted Logarithmic Barrier

$$\min_{\substack{s-t \text{ flow f of } \\ value v}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

Algorithm State

- Feasible *s*-*t* flow $f \in \mathbb{R}^E$ of value v
- Forward weights $w^+ \in \mathbb{R}^E$
- Reverse weights $w^- \in \mathbb{R}^E$

Potential: Weighted Logarithmic Barrier

$$\min_{\substack{s-t \text{ flow f of } \\ value v}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

$$\sum_{i=1}^{n-1} V_{i}(u_e^- - f_e^-) + w_e^- \log(u_e^- - f_e^-)$$

Algorithm State

- Feasible *s*-*t* flow $f \in \mathbb{R}^E$ of value v
- Forward weights $w^+ \in \mathbb{R}^E$
- Reverse weights $w^- \in \mathbb{R}^E$

Potential: Weighted Logarithmic Barrier

$$\min_{\substack{s-t \text{ flow f of } \\ value v}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

$$\bigcap_{\substack{r \in E}} Penalizes \text{ saturating } \\ forward capacity.}$$
Linear constraint: $B^{\mathsf{T}}f = v \cdot \chi_{s,t}$

Algorithm State

- Feasible *s*-*t* flow $f \in \mathbb{R}^E$ of value v
- Forward weights $w^+ \in \mathbb{R}^E$
- Reverse weights $w^- \in \mathbb{R}^E$

Potential: Weighted Logarithmic Barrier

$$\min_{\substack{s-t \text{ flow f of } \\ value v \\ \downarrow}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

$$\bigcap_{\substack{r \in E}} P_{\text{enalizes saturating}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}}} P_{\text{enalizes saturating}} P_{\text{enalizes}} P_{\text{enalizes}} P_{\text{enalizes saturating$$

$$\min_{B^{\top}f = v \cdot \chi_{s,t}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

$$\min_{B^{\top}f = v \cdot \chi_{s,t}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

• **Centering step:** move from approximate minimizer to exact minimizer without changing value of v using electric flows.

$$\min_{B^{\top}f = v \cdot \chi_{s,t}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$$

- **Centering step:** move from approximate minimizer to exact minimizer without changing value of v using electric flows.
- **Progress step:** Add multiple of s-t electric flow with resistances given by Hessian of $V_w(f)$ to increase v to v+ δ .

 $\min_{B^{\top}f = v \cdot \chi_{s,t}} V_w(f) = -\sum_{e \in E} (w_e^+ \log(u_e - f_e) + w_e^- \log(u_e + f_e))$

- **Centering step:** move from approximate minimizer to exact minimizer without changing value of v using electric flows.
- **Progress step:** Add multiple of s-t electric flow with resistances given by Hessian of $V_w(f)$ to increase v to v+ δ .
- Magic: Change weights so progress steps can be larger!

• When is the progress step forced to be small?

- When is the progress step forced to be small?
- Intuitively when the s-t electric flow has large flow on some edges e compared to their residual capacities.

- When is the progress step forced to be small?
- Intuitively when the s-t electric flow has large flow on some edges e compared to their residual capacities.
- [CKMST11,M13,M16]: When electric flow is *congested* on an edge e, increasing resistance of edge e reduces electric flow on it.

- When is the progress step forced to be small?
- Intuitively when the s-t electric flow has large flow on some edges e compared to their residual capacities.
- [CKMST11,M13,M16]: When electric flow is *congested* on an edge e, increasing resistance of edge e reduces electric flow on it.
- Increase resistance by increasing weights w_e⁺ and w_e⁻.

- When is the progress step forced to be small?
- Intuitively when the s-t electric flow has large flow on some edges e compared to their residual capacities.
- [CKMST11,M13,M16]: When electric flow is *congested* on an edge e, increasing resistance of edge e reduces electric flow on it.
- Increase resistance by increasing weights w_{p}^{+} and w_{p}^{-} .
- Analysis: Track electric flow energy as a potential function.

- When is the progress step forced to be small?
- Intuitively when the s-t electric flow has large flow on some edges e compared to their residual capacities.
- [CKMST11,M13,M16]: When electric flow is *congested* on an edge e, increasing resistance of edge e reduces electric flow on it.
- Increase resistance by increasing weights w_{p}^{+} and w_{p}^{-} .
- Analysis: Track electric flow energy as a potential function.

How to improve?

• New *energy maximization* framework for computing weight changes

- New *energy maximization* framework for computing weight changes
- [M16] combinatorial approach -- doubles resistances of edges that have large energy / electric flow.

- New *energy maximization* framework for computing weight changes
- [M16] combinatorial approach -- doubles resistances of edges that have large energy / electric flow.
- **Our approach:** solve weight budgeted energy maximization as its own optimization problem!

- Let c_e be weight increase needed to increase r_e by 1
- Let W be weight change budget
- Maximum energy increase possible with weight change budget W:

- Let c_e be weight increase needed to increase r_e by 1
- Let W be weight change budget
- Maximum energy increase possible with weight change budget W:

$$\max_{\|Cr'\|_1 \le W} \operatorname{energy}_{r+r'}(f) = \max_{\|Cr'\|_1 \le W} \min_{B^\top f = \chi_{s,t}} \|f\|_{r+r',2}^2 = \min_{B^\top f = \chi_{s,t}} \max_{\|Cr'\|_1 \le 1} \|f\|_{r+r',2}^2$$

- Let c_e be weight increase needed to increase r_e by 1
- Let W be weight change budget
- Maximum energy increase possible with weight change budget W:

$$\max_{\|Cr'\|_1 \le W} \operatorname{energy}_{r+r'}(f) = \max_{\|Cr'\|_1 \le W} \min_{B^\top f = \chi_{s,t}} \|f\|_{r+r',2}^2 = \min_{B^\top f = \chi_{s,t}} \max_{\|Cr'\|_1 \le 1} \|f\|_{r+r',2}^2$$

$$= \min_{B^{\top}f = \chi_{s,t}} \|f\|_{r,2}^{2} + \max_{\|Cr'\|_{1} \le W} \|f\|_{r',2}^{2}$$

- Let c_e be weight increase needed to increase r_e by 1
- Let W be weight change budget
- Maximum energy increase possible with weight change budget W:

$$\max_{\|Cr'\|_{1} \le W} \operatorname{energy}_{r+r'}(f) = \max_{\|Cr'\|_{1} \le W} \min_{B^{\top} f = \chi_{s,t}} \|f\|_{r+r',2}^{2} = \min_{B^{\top} f = \chi_{s,t}} \max_{\|Cr'\|_{1} \le 1} \|f\|_{r+r',2}^{2}$$
$$= \min_{B^{\top} f = \chi_{s,t}} \|f\|_{r,2}^{2} + \max_{\|Cr'\|_{1} \le W} \|f\|_{r',2}^{2}$$

$$= \min_{B^{\mathsf{T}} f = \chi_{s,t}} \|f\|_{r,2}^{2} + W \|C^{-1/2}f\|_{\infty}^{2}$$

- Let c_e be weight increase needed to increase r_e by 1
- Let W be weight change budget
- Maximum energy increase possible with weight change budget W:

$$\max_{\|Cr'\|_{1} \le W} \operatorname{energy}_{r+r'}(f) = \max_{\|Cr'\|_{1} \le W} \min_{B^{\top} f = \chi_{s,t}} \|f\|_{r+r',2}^{2} = \min_{B^{\top} f = \chi_{s,t}} \max_{\|Cr'\|_{1} \le 1} \|f\|_{r+r',2}^{2}$$

$$= \min_{B^{\top}f = \chi_{s,t}} \|f\|_{r,2}^{2} + \max_{\|Cr'\|_{1} \le W} \|f\|_{r',2}^{2}$$

 $= \min_{B^{\mathsf{T}} f = \chi_{s,t}} \|f\|_{r,2}^{2} + W \|C^{-1/2}f\|_{\infty}^{2} \qquad And$

An undirected flow problem!!!!

Solving Energy Maximization Problem

 $\frac{\text{The Energy Maximization Problem}}{\max_{\|Cr'\|_1 \le W} \text{energy}_{r+r'}(f) = \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2}$

Solving Energy Maximization Problem

$$\frac{\text{The Energy Maximization Problem}}{\max_{\|Cr'\|_1 \le W} \text{energy}_{r+r'}(f) = \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2}$$

Exact Solve

- Pick r = 0
- Pick $c = 1/u_e^2$
- Is undirected maximum flow...

Solving Energy Maximization Problem

$$\frac{\text{The Energy Maximization Problem}}{\max_{\|Cr'\|_1 \leq W} \text{energy}_{r+r'}(f) = \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2}$$

Exact Solve

- Pick r = 0
- Pick $c = 1/u_e^2$
- Is undirected maximum flow...

"Approximate" Solve

- Perform bounded weight increase for bound on $\ell_\infty\text{-norm}$ of congestion.
- Take augmenting electric flow step
- Change weights to "center" highly congested edges (i.e. improve ℓ₄)
- Perform standard centering.
[AS19] Also suffices for more ℓ_p -flow improvements.

Theorem [KPSW19] (informally) For $p = \log^c n$ with $c \in (0,2/3)$ in $m^{1+o(1)}$ time can solve

$$\min_{\substack{unit \ s-t \\ flow \ f \in \mathbb{R}^E}} \|f\|_{r,2}^2 + \|f\|_p^p = \sum_{e \in E} r_e \ f_e^2 + \sum_{e \in E} |f_e|^p$$

[AS19] Also suffices for more ℓ_p -flow improvements.

For $p = \log^c n$ with $c \in (0,2/3)$ in $m^{1+o(1)}$ time can solve

$$\min_{\substack{unit \ s-t \\ Flow \ f \in \mathbb{R}^E}} \|f\|_{r,2}^2 + \|f\|_p^p = \sum_{e \in E} r_e \ f_e^2 + \sum_{e \in E} |f_e|^p$$

[AS19] Also suffices for more ℓ_p -flow improvements.

[AS19] Also suffices for more ℓ_p -flow improvements.

The Energy Maximization Problem $\max_{\|Cr'\|_1 \le W} \operatorname{energy}_{r+r'}(f)$ $= \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2$

The Energy Maximization Problem $\max_{\|Cr'\|_1 \le W} \operatorname{energy}_{r+r'}(f)$ $= \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2$ Theorem [KPSW] (informally) For $p = \log^{c} n$ with $c \in (0,2/3)$ in can solve in almost linear time: $\min_{\substack{unit \ s-t \ flow \ f \in \mathbb{R}^{E}}} \|f\|_{r,2}^{2} + \|f\|_{p}^{p}$

The Energy Maximization Problem $\max_{\|Cr'\|_1 \le W} \operatorname{energy}_{r+r'}(f)$ $= \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2$ Theorem [KPSW] (informally) For $p = \log^{c} n$ with $c \in (0,2/3)$ in can solve in almost linear time: $\min_{\substack{unit \ s-t \\ flow \ f \in \mathbb{R}^{E}}} \|f\|_{r,2}^{2} + \|f\|_{p}^{p}$

Problem

- $\|\cdot\|_{\infty}$ versus $\|\cdot\|_p$ for $p = \log^c n$
- Resistances versus flow
- $\|\cdot\|^2$ versus $\|\cdot\|^p$
- $C^{-1/2}f$ versus f

The Energy Maximization Problem

$$\max_{\|Cr'\|_1 \le W} \operatorname{energy}_{r+r'}(f)$$

$$= \min_{B^\top f = \chi_{s,t}} \|f\|_{r,2}^2 + W \|C^{-1/2}f\|_{\infty}^2$$

Theorem [KPSW] (informally) For $p = \log^{c} n$ with $c \in (0,2/3)$ in can solve in almost linear time: $\min_{\substack{unit \ s-t \\ flow \ f \in \mathbb{R}^{E}}} \|f\|_{r,2}^{2} + \|f\|_{p}^{p}$

<u>Problem</u>

- $\|\cdot\|_{\infty}$ versus $\|\cdot\|_p$ for $p = \log^c n$
- Resistances versus flow
- $\|\cdot\|^2$ versus $\|\cdot\|^p$
- $C^{-1/2}f$ versus f

Solution

- $p = \log^c n$ is close enough for approx
- Standard primal-dual tricks
- Reducible by binary search
- Pick *C* = *I* and hope for the best?

Weighted Energy Max Algorithm

- Perform bounded weight increase for bound on ℓ_{∞} -norm of congestion.
- Take augmenting electric flow step
- Change weights to "center" highly congested edges (i.e. improve ℓ₄)
- Perform standard centering.

Weighted Energy Max Algorithm

- Perform bounded weight increase for bound on ℓ_{∞} -norm of congestion.
- Take augmenting electric flow step
- Change weights to "center" highly congested edges (i.e. improve ℓ_4)
- Perform standard centering.

Unweighted Energy Max Algorithm

Undo un-necessary weight changes

Tradeoff yields $m^{11/8+o(1)}U^{1/4}$

Weighted Energy Max Algorithm

- Perform bounded weight increase for bound on ℓ_{∞} -norm of congestion.
- Take augmenting electric flow step
- Change weights to "center" highly congested edges (i.e. improve ℓ_4)
- Perform standard centering.

Unweighted Energy Max Algorithm

Undo un-necessary weight changes

```
Tradeoff yields m^{11/8+o(1)}U^{1/4}
```

No potential function!

<u>Note</u>

Can get $m^{7/5+o(1)}U^{2/5}$ even without this.

Recent Advances in Flow Problems

Part 1

Part 2

 $\frac{\text{Directed Maximum Flow}}{m^{11/8+o(1)}U^{1/4}}$

Better Primitives?

Smoothed Ip flows for weighted graphs

Better Primitives?

Smoothed Ip flows for weighted graphs

Better Methods?

- Can we go beyond IPMs?
- Can we completely leave I2 as with approximate maxflows?
- Can we more directly use smoothed I2-Ip flows?

Better Primitives?

Smoothed Ip flows for weighted graphs

Better Methods?

- Can we go beyond IPMs?
- Can we completely leave I2 as with approximate maxflows?
- Can we more directly use smoothed I2-Ip flows?

Better Combinatorics?

• Achieving a (log U) dependence.

Better Primitives?

Smoothed Ip flows for weighted graphs

Better Methods?

- Can we go beyond IPMs?
- Can we completely leave I2 as with approximate maxflows?
- Can we more directly use smoothed I2-Ip flows?

Better Combinatorics?

• Achieving a (log U) dependence.

Better Primitives?

• Smoothed Ip flows for weighted graphs

Better Methods?

- Can we go beyond IPMs?
- Can we completely leave I2 as with approximate maxflows?
- Can we more directly use smoothed I2-Ip flows?

Better Combinatorics?

• Achieving a (log U) dependence.

Divergence minimizing flows

Better Primitives?

Smoothed Ip flows for weighted graphs

Better Methods?

- Can we go beyond IPMs?
- Can we completely leave I2 as with approximate maxflows?
- Can we more directly use smoothed I2-Ip flows?

Better Combinatorics?

Achieving a (log U) dependence.

<u>New Result! [LS20]</u> m^{4/3+o(1)}U^{1/3} **Regularized Newton Steps**

Divergence minimizing flows

Better Primitives?

Smoothed Ip flows for weighted graphs

Better Methods?

- Can we go beyond IPMs?
- Can we completely leave I2 as with approximate maxflows?
- Can we more directly use smoothed I2-Ip flows?

Better Combinatorics?

• Achieving a (log U) dependence.

<u>New Result! [LS20]</u> m^{4/3+o(1)}U^{1/3} **Regularized Newton Steps**

[AMV20] Mincost flows in time m^{4/3+o(1)}log C

Divergence minimizing flows

Faster Energy Maximization for Faster Maximum Flow

arXiv : 1910.14276

The End

Questions?

Yang P. Liu

Aaron Sidford

Contact Info:

- email: yangpliu@stanford.edu
- website: *yangpliu.github.io*