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The Maximum Flow Problem

Directed graph G = (V, E) with n vertices and m edges.

Edge e has capacity ue in [1, 2, …, U].

Source vertex s and sink t.

Route as much flow from s -> t such that
flow on edge e in between [0, ue].

Also, every vertex except s, t must have equal
incoming and outgoing flow (demand constraint)
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Directed graph G = (V, E) with n vertices and m edges.

Edge e has capacity ue in [1, 2, …, U].

Source vertex s and sink t.

Route as much flow from s -> t such that
flow on edge e in between [0, ue].

Also, every vertex except s, t must have equal
incoming and outgoing flow (demand constraint)

Let f in RE denote 
the flow vector, i.e. 
f

e
 = flow on edge e.
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Other Variations

Decision version: instead, decide whether F units can be routed from s -> t without 
violating capacity constraints. Assume this version throughout.

General demands: can we route a flow such that vertex v has net flow dv without 
violating capacity constraints? Reducible to s-t maxflow.

We call the vector dv for v in V the demand vector. Sum of dv over v to = 0.

Assume G is undirected throughout.
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Why Maximum Flow?

Fundamental problem

Well studied with decades of extensive research

Historically, improvements have yielded general tools

Applications

Minimum s-t cut, bipartite matching, scheduling, transportation, clustering

Methods often solve more general cases: mincost flow, negative weight 
shortest paths, mincost matching, optimal transport



Previous Work on Maximum Flows: Classical Results
[Ford-Fulkerson 1956]

Augmenting paths

[Dinic 1970] O(mn2)
O(min(m3/2, mn2/3)) on unit graphs

Blocking flow with shortest paths

Dynamic tree data structures

[Galil-Naamad 1980]
O(mn log2 m)

[Edmonds-Karp 1972] 
O(m2 log U)

Capacity-scaling

[Dinic 1973, Gabow 1985] 
O(mn log U)

Capacity-scaling

[Goldberg-Rao 1998] 
O(min(m3/2, mn2/3) log m log U)

Capacity-scaling and
general length potentials

[Sleator-Tarjan 1983]
O(mn log m)
Link-cut tree
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[Ford-Fulkerson 1956]

Augmenting paths

[Dinic 1970] O(mn2)
O(min(m3/2, mn2/3)) on unit graphs

Blocking flow with shortest paths

Dynamic tree data structures

[Galil-Naamad 1980]
O(mn log2 m)

[Sleator-Tarjan 1983]
O(mn log m)
Link-cut tree

[Edmonds-Karp 1972] 
O(m2 log U)

Capacity-scaling

[Dinic 1973, Gabow 1985] 
O(mn log U)

Capacity-scaling

[Goldberg-Rao 1998] 
O(min(m3/2, mn2/3) log m log U)

Capacity-scaling and
general length potentials

Early use of dynamic graph data 
structures to speed up algorithms.



Previous Work on Maximum Flows: More Recent Work

[Daitch-Spielman 2008] Õ(m3/2 log U)
Electrical flow and IPM (interior point method)

[Lee-Sidford 2014] Õ(mn1/2 log U)
Electrical flow and improved IPM

[Madry 2013, 2016] Õ(m10/7U1/7)
Electrical flow and IPM

with weight change

[CKMST 2011, Sherman 
2013/2018, KLOS 2013, Peng 

2014, ST 2018] Õ(mε-1) for
ε-approximate undirected

[BLNPSSSW 2020, BLLSSSW 2021]
Õ((m+n3/2) log U)

Electrical flow + IPM + data structures

[This work]
Õ(m3/2-1/328 log U) ≈ Õ(m1.497 log U)

Electrical flow + IPM + data structures

Dynamic graph
data structures!

[Liu-Sidford 2020 x 2, Kathuria 2020] 
O(m4/3+o(1)U1/3)

IPMs + Lp-norm flows
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s-t electric flow is the minimum energy flow, i.e. it minimizes             over all flows 
sending one unit from s to t. is known as the energy. 



Electrical Flows

Undirected graph G = (V, E), edge e has resistance re.

s-t electric flow is the minimum energy flow, i.e. it minimizes             over all flows 
sending one unit from s to t. is known as the energy. 

Physically, corresponds to an electrical circuit where edge e is a resistor with 
resistance re, and a battery is hooked to s, t to induce voltage drop.

s t1/2

1/6

1/6

1/6
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Why Electrical Flows?

Applications

Corresponds to solving Laplacian systems.

Estimate hitting probabilities for random walks, spectral graph clustering, 
PageRank, traffic modelling

Powerful primitive

Solvable in O(m log logO(1) m) time [Jambalupati-Sidford 2020]

Used in several recent advances in solving the maximum flow problem
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Dynamic Electrical Flows for Maxflow

Interior point methods (IPMs) solve linear programs in m variables by solving Õ
(m1/2) linear systems.

For maximum flow the linear systems correspond to electrical flows.

Concrete view [Madry 2013, 2016]: Compute maximum s-t flow by augmenting by 
Õ(m1/2) electrical flows.

Contrasts with classical approach of augmenting paths.

Basic approach: Build maximum flow from Õ(m1/2) electrical flows.
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Dynamic Electrical Flows for Maxflow

Refined approach [Karmarkar, Vaidya]: Only update the edge resistance when it 
changes by > 1.1 factor -- can show this happens Õ(m) total times.

Build a data structure that:

Initializes an undirected graph G with resistances.

Supports resistance updates.

Can report all edges in e with large flow/energy in an s-t electric flow.

At a high level, such a data structure with sublinear m1-c
 amortized runtime 

improves over O(m3/2 log U) time maxflow.



Our Results: Heavy Hitters for Dynamic Electric s-t Flows

Randomized data structure against oblivious adversaries.

Guarantee: The energy of the s-t electric flow is <= 1 at all times.

Operations:

● Initialize(G = (V, E), r in RE, ε) -- Graph G, resistance re on edge e, accuracy ε
● Update(e, rnew) -- changes the resistances of edge e to rnew.
● Locate() -- Returns O(ε-2) edges containing all edges e with energy refe

2  >= ε2. 
(Here fe is any (1+ε)-approximate s-t electric flow)



Our Results: Heavy Hitters for Dynamic Electric s-t Flows

Randomized data structure against oblivious adversaries.

Guarantee: The energy of the s-t electric flow is <= 1 at all times.

Operations:

● Initialize(G = (V, E), r in RE, ε) -- Graph G, resistance re on edge e, accuracy ε
● Update(e, rnew) -- changes the resistances of edge e to rnew.
● Locate() -- Returns O(ε-2) edges containing all edges e with energy refe

2  >= ε2. 
(Here fe is any (1+ε)-approximate s-t electric flow)

Theorem [GLP21]: There is a data structure 
supporting these operations in armotized 

sublinear m0.99ε-O(1) time per query.
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Our Results: Maxflow Faster Than m1.5 log U

First improvement to the O(m1.5 log m log U) time algorithm of Goldberg-Rao 1998 
on sparse graphs.

Approach: use the previous data structure to implicitly add Õ(m1/2) electrical flows 
to get the final maxflow, implementing each iteration in sublinear time.

Theorem [GLP21]: Maximum flow on 
graphs with capacities in [1, U] can be 

solved in time Õ(m3/2-1/328 log U).
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Dynamic Graph Data Structures and Vertex Sparsifiers

Goal: Build data structures that achieve efficient (eg. sublinear) update time for 
processing graphs that are changing.

Examples: edge connectivity, flows, shortest paths and reachability in directed 
graphs, effective resistances

Approaches: Graph decompositions -- reduce the problem on a large graph to a 
similar problem on a smaller graph

Referred to as vertex sparsification: reduce the number of vertices while 
maintaining important quantities, i.e. edge connectivity or effective resistance.



Previous Work on Dynamic Graph Data Structures

Edge connectivity: under a graph with edge insertions and deletions, decide 
whether vertices s-t are c-edge-connected, i.e. there are c disjoint paths.
[Fre85, GI91b, GI91a, WT92, EGIN97, Fre97, HK97, HT97, HK99, Tho00, HdLT01, KKM13, Wul13, KRKPT16, NS17, NSW17, Wul17, HRT18, CGL+19].

Recently, c-edge-connectivity vertex sparsifiers: [CDKLLPSV20, JS20] and no(1) 
deterministic worst-case update time for constant c.
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Edge connectivity: under a graph with edge insertions and deletions, decide 
whether vertices s-t are c-edge-connected, i.e. there are c disjoint paths.
[Fre85, GI91b, GI91a, WT92, EGIN97, Fre97, HK97, HT97, HK99, Tho00, HdLT01, KKM13, Wul13, KRKPT16, NS17, NSW17, Wul17, HRT18, CGL+19].

Recently, c-edge-connectivity vertex sparsifiers: [CDKLLPSV20, JS20] and no(1) 
deterministic worst-case update time for constant c.

Flow approximations and shortest paths: [CGHPS20, GRST20] sublinear time 
no(1) approximate shortest paths and maxflow.

Dynamic effective resistances: [DGGP19, CGHPS20] sublinear time 
(1+ε)-approximate pairwise effective resistance in dynamic graph.
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Effective Resistances and Schur Complements

Given a graph G = (V, E) be B denote the (m x n) edge-vertex incidence matrix.

Laplacian: For R = diag(r) (diagonal matrix of resistances), L = BTR-1B.

Effective resistance between s-t: χstL
-1χst.

χst = demand routing 1 unit 
from s -> t. +1 is s-coordinate, 

-1 in t-coordinate.
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Effective resistance between s-t: χstL
-1χst = χst(B

TR-1B)-1χst.

Intuition: this is the spectral form induced by the Laplacian inverse.

Vertex sparsifier onto C containing {s, t}: construct a Laplacian on C whose 
inverse approximates the inverse of L on vectors supported on C.

Concretely: matrix LC such that for all vectors d on C, dTL-1d ≈ dTLC
-1d.
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Effective Resistances and Schur Complements

Concretely: matrix LC such that for all vectors d on C, dTL-1d ≈ dTLC
-1d.

Matrix LC exists that preserves the inverse form exactly: Schur complement.

and

Can show that SC(L, C) is a Laplacian matrix.

Cholesky factorization: 
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Dynamic Schur Complements by Random Walks

Approach: solve dynamic effective resistance by maintaining approximate dynamic 
SC (need approximate b/c the true SC is dense)

[DGGP19]: Maintain SC approximation by sampling random walks.

Theorem: Let C be a subset of vertices of a graph G = (V, E, r). Consider the 
following procedure. For each edge e = (u, v) in E, repeat p = O(ε-2 log n) times:

1. Run a random walk from u (resp. v) with exit probability proportional to r-1 
until it hits C, say at t1 and t2.

2. Let W be the set of edges on the walk when connected using edge (u, v).
3. Add edge (t1, t2) to a graph H with resistance =

Then H is a (1+ε)-approximation spectrally of SC(L(G), C).



C

The terminal 
set
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Dynamic Schur Complements by Random Walks

Algorithm for dynamic SC under resistance changes:

1. Initialize random walks from each edge e in G.
2. When edge e = (u, v) has resistance changed, add both endpoints u, v 

into the set C (the terminals). Shortcut random walks accordingly.
3. Update the resistance of edge e (which now fully inside C)



Dynamic Schur Complements by Random Walks

Algorithm for dynamic SC under resistance changes:

1. Initialize random walks from each edge e in G.
2. When edge e = (u, v) has resistance changed, add both endpoints u, v 

into the set C (the terminals). Shortcut random walks accordingly.
3. Update the resistance of edge e (which now fully inside C)

When effective resistance of s-t is queried:

1. Add s, t to the set C (the terminals).
2. Return χstH

-1χst, where H is the approximation to SC(L, C) maintained.

Step 2 of this can take time Õ(|C|ε-2) if we use a 1+ε sparsifier of H.



Electric Flow Concepts

For a demand vector d, we say that a flow f routes d if BTf = d.

Electric potentials for demand d is given by Φ = L-1d = (BTR-1B)-1d.

Electric flow: f = R-1BΦ = R-1B(BTR-1B)-1d.

Ohm’s Law: for e = (u, v) we have fe = (Φu - Φv)/re.



Formal Dynamic Electric Flow Setup

Problem: Given initial graph G = (V, E, r), source s, sink t, accuracy ε,

1. Update: change resistance of edge e.
2. Query: for the unit s-t electric flow f = R-1B(BTR-1B)-1χst, guaranteed that                                        

the energy is <= 1, i.e.      , return a subset S of 
edge that contains all edges e with energy      , and |S| = O(ε-2).



Formal Dynamic Electric Flow Setup

Problem: Given initial graph G = (V, E, r), source s, sink t, accuracy ε,

1. Update: change resistance of edge e.
2. Query: for the unit s-t electric flow f = R-1B(BTR-1B)-1χst, guaranteed that                                        

the energy is <= 1, i.e.      , return a subset S of 
edge that contains all edges e with energy      , and |S| = O(ε-2).

Harder than dynamic ER because we have to report the high energy edges -- in 
dynamic ER we are told the pair of vertices in the ER query.
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We wish to find coordinates of the vector R1/2f that are >= ε, given |R1/2f|2 <= 1.



Reduction to Maintaining Energy of Subsets

We wish to find coordinates of the vector R1/2f that are >= ε, given |R1/2f|2 <= 1.
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for any vector y in Rn, and vector v satisfying |v - Qy|_inf <= ε/100, we can find all 
coordinates of y that are >= ε in time Õ(ε-2). Q has all entries in {-1, 0, 1}.

Use this for y = R1/2f -- need to approximately maintain
QR1/2f = QR-1/2B(BTR-1B)-1χst under changes to R.
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Reduction to Maintaining Energy of Subsets

Maintain: QR1/2f = QR-1/2B(BTR-1B)-1χst under changes to R.

Demand projection Potentials on terminal

Length |C| vectorÕ(ε-2) length |C| vectors

Plan: approximately maintain both 
quantities dynamically.

We’ll start by discussing the potentials, 
then the demand projection.
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Maintaining Potentials on Terminals

Maintain: SC(L, C)-1χst.

Solution: Directly use the dynamic Schur complement from [DGGP19] for 
effective resistance!

Prove that (1+ε)-approximate Schur complement suffices for our purposes.
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Maintaining Demand Projections

Maintain:     <- transpose of earlier expression.

Let q be a column of QT, there are Õ(ε-2) of these. Recall q is in {-1, 0, 1}n.

Let d = BTR-1/2q, so d is a demand vector.

Maintain: -- for simplicity say d fixed, and L changes (via 
resistance updates in the graph).

Interpretation of above quantity via random walks -- intuitively you think of d as a 
mass over vertices of G, and you “random walk” that mass onto C via exit 
probability proportional to inverse of resistances.
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Quantity:

Linear in d, so let’s understand what happens if d = 1v.
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Reductions to Ensure Stability

Quantity: , need an approximation of each coordinate up to +-ε.

Recall d = BTR-1/2q, where q in {-1, 0, 1}^n.

If R has some small entries, then d can have very large entries, and affect the 
approximation / stability.

Lemma: If re <= ε2, then energy of e, i.e. refe
2 <= ε2.

Proof: Because f is a unit s-t electric flow, we know fe <= 1. So refe
2 <= re <= ε2.

So we assume that dv <= deg(v)ε-1 from now on. Intuitively, think of as O(1).
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Approach 1: Project Demands by Random Walks

Maintain:

Interpretation of above quantity via random walks -- intuitively you think of d as a 
mass over vertices of G, and you “random walk” that mass onto C via exit 
probability proportional to inverse of resistances.

Idea: Use random walks sampled from each vertex to simulate this!

Issue: Say dv = O(1), and we sample p walks from v until they hit C. “Variance” of 
this sample is O(1) per sample, so 1/p when you average over s walks.

There are m vertices / edges to sample from, so the sum of variance is m/p: huge!
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Estimate Change in Projected Demands by Sampling

Maintain:       . From now on, we will denote as     . 

Idea: Instead estimate the change in      under terminal insertions to C, and 
rebuild every couple of iterations once error accumulates.

Fact:     .

Proof: Consider first sampling a random walk from a vertex u to {C U v}. Now, 
take all the mass at v and continue random walking it until it hits C. This is a valid 
simulation of random walking from u -> C only. Equating these two formulations 
gives the result.
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Estimate Change in Projected Demands by Sampling

Maintain:       . From now on, we will denote as     . 

Fact:     .

Intuitive analysis: Both terms have variance ~cong(v)/p, where cong(v) = # of 
random walks passing through v and p = oversampling. Much smaller error!

Maintain by sampling 
random walks up front and 

dynamically shorten.

Maintain by sampling 
fresh random walks 

from v to C.
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Rebuilding Terminals and Projected Demands

Let’s say sampling the change induces error δ, and desired error ε.

Support δ-1ε terminal additions, then recompute    =           exactly.

Doable with a single Laplacian system solve.

Amortized time δmε-3, as there are Õ(ε-2) test vectors.

Pick δ << ε, and trade off parameters properly (increase oversampling parameter).
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Adaptive Adversaries and Checker Data Structure

As described, previous algorithm’s randomness might affect future queries.

We fix this by wrapping it inside a separate algorithm Checker which 
independently estimates the flow on edges with a separate dynamic SC.

Need to carefully ensure that extra edges returned by the heavy hitter are not 
“accepted” by Checker, i.e. returned to the main IPM to update.

Also need to make sure extra edges returned by heavy hitter don’t affect the 
responses of Checker on remaining edges.
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are picked 
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Adaptive query!
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Adaptive Checker

Main algorithm

Checker
(against 
adaptive 

adversary)

Locator
(against 
oblivious 

adversary)

Returns all edges 
with energy >=1 + 
random extra 
edges

Returns edges with 
energy >=10 + 
random edges in 
[1,10]
+ no extra edges 
from locator
Updates the 
resistances 
(adaptive 
query)

Updates the 
resistances 
(oblivious)

Make “semi-adaptive” by oversampling 
to capture all possible terminal sets / 

Schur complements possibly 
encountered.
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k = m1/328. Goal is reduce residual flow by (1-k/m1/2) in Õ(m) amortized time.

Initialize data structures: Checker and Locator (heavy hitter) to accuracy ε.

For Õ(m1/2/k) batched steps:

Split into k4 equally sized steps of size 1/(k3m1/2).

Locator + Checker return edges S with >= ε fraction of flow in s-t electric flow.

Update resistances of edges in S, pass to Checker and Locator.

Pay Õ(m) time to bring flow back to “central path” of the interior point method.

k4ε-2 = O(k16) updates.

Amortized m1-c per call / 
update.
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Heuristic Analysis

Pay Õ(m) after each “batched step” x Õ(m1/2/k) = Õ(m3/2/k).

O(k16) updates per phase x Õ(m1/2/k) phases x O(m1-c) per update = Õ(m3/2-ck15).

Õ(m3/2/k) = Õ(m3/2-ck15) -> k = mc/16.

Total runtime is Õ(m3/2-c/16) << m1.5 at least!

(log U) dependence comes from capacity scaling: our algorithm can handle 
arbitrary polynomial sized weights in Õ(m3/2-1/328).
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electric flows during the method.

Standard IPM adds in electric circulations between steps to “recenter” a little.



Additional Difficulties

Analysis of the interior point method is slightly non-standard, as we only use s-t 
electric flows during the method.

Standard IPM adds in electric circulations between steps to “recenter” a little.

Some resistance updates accumulate over the course of several electric flow 
updates (instead of during a batched step).

Need to update such edges and trade off with cost of resistance updates in 
Checker and Locator.
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Conclusion

We give an algorithm that solves maxflow in Õ(m1.497 log U) on capacitated graphs

First improvement to the Õ(m1.5 log U) algorithm of Goldberg-Rao 1998.

Approach is based on augmenting electrical flows and sublinear m1-c algorithm for 
a specific instance of a dynamic electric flow problem.

Precisely, detect and return high energy edges in the s-t electric flow on a dynamic 
graph with changing resistances.
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Further Directions / Open Problems

We believe that every piece of our algorithm can be improved or simplified.

Outer method (IPM): Current IPM is highly tailored to the data structures, in 
particular that we primarily use s-t flows (instead of more general demands).

Standard IPM uses general demands / circulations (and better parameters).

Heavy hitter: Large dependencies on parameters, only slightly sublinear. Only 
handles s-t flows. Improve (1+ε)-approximate dynamic ER in general?

Adaptivity: Current solution involves using a Checker and oversampling to control 
all possible terminal sets. Resparsification? [BBGNSSS20]
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