Parallel Repetition for k-Player Projection Games

Yang P. Liu (IAS)

Joint with Amey Bhangale, Mark Braverman,

Subhash Khot, Dor Minzer

k-Player Game

- Finite questions sets X_1, X_2, \dots, X_k and answer sets A_1, A_2, \dots, A_k
- Distribution μ on $X_1 \times \cdots \times X_k$

k-Player Game

- Finite questions sets X_1, X_2, \dots, X_k and answer sets A_1, A_2, \dots, A_k
- Distribution μ on $X_1 \times \cdots \times X_k$
- Strategies: functions $f_i: X_i \to A_i$ for i = 1, 2, ..., k
- Winning probability: $\mathbb{E}_{\substack{(x_1,\dots,x_k)\sim\mu}} V(x_1,\dots,x_k,f(x_1),\dots,f(x_k))$ for arbitrary known predicate $V: X_1 \times \cdots \times X_k \times A_1 \times \cdots \times A_k \to \{0,1\}$

k-Player Game

- Finite questions sets X_1, X_2, \dots, X_k and answer sets A_1, A_2, \dots, A_k
- Distribution μ on $X_1 \times \cdots \times X_k$
- Strategies: functions $f_i: X_i \to A_i$ for i = 1, 2, ..., k
- Winning probability: $\mathbb{E}_{\substack{(x_1,\dots,x_k)\sim\mu}} V(x_1,\dots,x_k,f(x_1),\dots,f(x_k))$ for arbitrary known predicate $V: X_1 \times \cdots \times X_k \times A_1 \times \cdots \times A_k \to \{0,1\}$
- Game \mathcal{G} consists of μ , V
- $val(\mathcal{G})$ denotes maximum winning probability

Example 3XOR Game

- System of linear equations $x_{i_t} + y_{j_t} + z_{k_t} = a_t$, say in \mathbb{F}_2
- $i_t, j_t, k_t \in \{1, ..., M\}$, so the questions sets are size M
- Answer sets: \mathbb{F}_2

Example 3XOR Game

- System of linear equations $x_{i_t} + y_{j_t} + z_{k_t} = a_t$, say in \mathbb{F}_2
- $i_t, j_t, k_t \in \{1, \dots, M\}$, so the questions sets are size M
- Answer sets: \mathbb{F}_2
- μ is a random equation: player 1, 2, 3 receive i_t , j_t , k_t respectively
- Win if the responses sum to a_t

Example 3XOR Game

- System of linear equations $x_{i_t} + y_{j_t} + z_{k_t} = a_t$, say in \mathbb{F}_2
- $i_t, j_t, k_t \in \{1, ..., M\}$, so the questions sets are size M
- Answer sets: \mathbb{F}_2
- μ is a random equation: player 1, 2, 3 receive i_t , j_t , k_t respectively
- Win if the responses sum to a_t
- Winning probability: maximum fraction of equations that can be satisfied simultaneously

• If we repeat G for n independent rounds in succession, probability of winning all rounds is at most $val(G)^n$

- If we repeat G for n independent rounds in succession, probability of winning all rounds is at most $val(G)^n$
- What if *n* rounds are implemented in parallel?

- If we repeat G for n independent rounds in succession, probability of winning all rounds is at most $val(G)^n$
- What if *n* rounds are implemented in parallel?
- $x^{(1)}, \dots, x^{(n)} \sim \mu, x^{(t)} \in X_1 \times \dots \times X_k$
- Player *i* receives all of $x_i^{(t)}$ for t = 1, ..., n simultaneously
- Strategies are now functions $f_i: X_i^n \to A_i^n$

- If we repeat G for n independent rounds in succession, probability of winning all rounds is at most $val(G)^n$
- What if *n* rounds are implemented in parallel?
- $x^{(1)}, \dots, x^{(n)} \sim \mu, x^{(t)} \in X_1 \times \dots \times X_k$
- Player *i* receives all of $x_i^{(t)}$ for t = 1, ..., n simultaneously
- Strategies are now functions $f_i: X_i^n \to A_i^n$
- Call this game $\mathcal{G}^{\otimes n}$: does $val(\mathcal{G}^{\otimes n})$ decay (exponentially) with n?

Parallel Repetition: What's Known

- 2-player case: $val(\mathcal{G}^{\otimes n}) \leq \exp(-\Omega_{\mathcal{G}}(n))$ [Raz98]
- Fundamental result with several applications

Parallel Repetition: What's Known

- 2-player case: $val(\mathcal{G}^{\otimes n}) \leq \exp(-\Omega_{\mathcal{G}}(n))$ [Raz98]
- Fundamental result with several applications
- Many follow ups:
 - Simpler proofs and improved bounds [Holenstein09,Rao11,DS14]
 - Better understanding for why $val(\mathcal{G}^{\otimes n}) = val(\mathcal{G})^n$ fails

Parallel Repetition: More Players

- The case of more than two players is poorly understood
- Best general bound: $val(\mathcal{G}^{\otimes n}) \leq o_n(1)$ [Verbitsky '96] via the Density Hales-Jewett theorem

Parallel Repetition: More Players

- The case of more than two players is poorly understood
- Best general bound: $val(\mathcal{G}^{\otimes n}) \leq o_n(1)$ [Verbitsky '96] via the Density Hales-Jewett theorem
- Restricted classes of games:
 - 3-player games with binary questions [Girish-Holmgren-Mittal-Raz-Zhan]
 - GHZ game [Braverman-Khot-Minzer]

Parallel Repetition: More Players

- The case of more than two players is poorly understood
- Best general bound: $val(\mathcal{G}^{\otimes n}) \leq o_n(1)$ [Verbitsky '96] via the Density Hales-Jewett theorem
- Restricted classes of games:
 - 3-player games with binary questions [Girish-Holmgren-Mittal-Raz-Zhan]
 - GHZ game [Braverman-Khot-Minzer]
- Connected games: consider graph where two inputs $x \in X_1 \times \cdots \times X_k$ and $x' \in X_1 \times \cdots \times X_k$ have an edge if x, x' differ in one coordinate
- [Dinur-Harsha-Venkat-Yuen]: $val(\mathcal{G}^{\otimes n})$ decays exponentially for connected games

k-Player Projection Games

• For each question $x \in supp(\mu)$, there are maps $\sigma_x^i: A_i \to D_x$ for some set D_x such that answer (a_1, \dots, a_k) wins if and only if $\sigma_x^1(a_1) = \sigma_x^2(a_2) = \dots = \sigma_x^k(a_k)$

k-Player Projection Games

- For each question $x \in supp(\mu)$, there are maps $\sigma_x^i: A_i \to D_x$ for some set D_x such that answer (a_1, \dots, a_k) wins if and only if $\sigma_x^1(a_1) = \sigma_x^2(a_2) = \dots = \sigma_x^k(a_k)$
- Equivalently, for a fixed question x, the k-partite hypergraph on $A_1 \times \cdots \times A_k$ formed by accepting answers satisfies that: all connected components are complete hypergraphs

Main Result and Outline

• **Theorem:** If G is a k-player projection game with val(G) < 1, then $val(G^{\otimes n}) \leq exp(-\Omega_G(n))$

Main Result and Outline

- **Theorem:** If G is a k-player projection game with val(G) < 1, then $val(G^{\otimes n}) \leq exp(-\Omega_G(n))$
- **Proof plan:** Iteratively increase the support size of *G* until its connected.

Main Result and Outline

- **Theorem:** If G is a k-player projection game with val(G) < 1, then $val(G^{\otimes n}) \leq exp(-\Omega_G(n))$
- **Proof plan:** Iteratively increase the support size of \mathcal{G} until its connected.
- **Precisely:** Construct a game \mathcal{G}' such that $\operatorname{supp}(\mathcal{G}) \subset \operatorname{supp}(\mathcal{G}')$, $\operatorname{val}(\mathcal{G}^{\otimes n})^{O(1)} \leq \operatorname{val}(\mathcal{G}'^{\otimes n})$
- Apply parallel repetition for connected games [DHVY'17]

Increasing the Support

- Consider 3-player games for simplicity
- Define a new game \mathcal{G}' as follows:
 - Sample two questions (x, y, z) and (x, y', z') which share the value of x
 - Send (x, y, z') to the players and receive answers
 - If $(x, y, z) \neq (x, y', z')$ always accept
 - If (x, y, z) = (x, y', z') accept based on (x, y, z)

Increasing the Support

- Consider 3-player games for simplicity
- Define a new game \mathcal{G}' as follows:
 - Sample two questions (x, y, z) and (x, y', z') which share the value of x
 - Send (x, y, z') to the players and receive answers
 - If $(x, y, z) \neq (x, y', z')$ always accept
 - If (x, y, z) = (x, y', z') accept based on (x, y, z)
- Note: \mathcal{G}' is a projection game
- Need: relate val $\left({\mathcal{G}'}^{\otimes n}
 ight)$ to val $\left({\mathcal{G}}^{\otimes n}
 ight)$

Relating Game Values

- Probability that both (x, y, z) and (x, y', z') are winning in G is at least val $(G^{\otimes n})^2$ by Cauchy-Schwarz
- By the projection property same strategies win on (x, y, z')

• Thus val
$$(\mathcal{G}'^{\otimes n}) \ge \operatorname{val}(\mathcal{G}^{\otimes n})^2$$

Relating Game Values

- Probability that both (x, y, z) and (x, y', z') are winning in G is at least val $(G^{\otimes n})^2$ by Cauchy-Schwarz
- By the projection property same strategies win on (x, y, z')

• Thus val
$$(\mathcal{G}'^{\otimes n}) \ge \operatorname{val}(\mathcal{G}^{\otimes n})^2$$

- Apply this transformation repeatedly (swap roles of x, y, z)
- Eventually game is connected

Conclusion

- Parallel repetition with exponential decay for the class of k-player projection games
- Proof slowly increases support size until the game is connected

Conclusion

- Parallel repetition with exponential decay for the class of k-player projection games
- Proof slowly increases support size until the game is connected
- Other classes of games with strong parallel repetition results?
- "Barriers" to applying this method to general parallel repetition?

The End