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• 𝜇 is a random equation: player 1, 2, 3 receive 𝑖𝑡 , 𝑗𝑡 , 𝑘𝑡 respectively
• Win if the responses sum to 𝑎𝑡
• Winning probability: maximum fraction of equations that can be 

satisfied simultaneously
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• Call this game 𝒢⊗𝑛: does 𝑣𝑎𝑙(𝒢⊗𝑛) decay (exponentially) with 𝑛?
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• Fundamental result with several applications
• Many follow ups:

• Simpler proofs and improved bounds [Holenstein09,Rao11,DS14]
• Better understanding for why 𝑣𝑎𝑙(𝒢⊗𝑛) = 𝑣𝑎𝑙 𝒢 𝑛 fails
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• Best general bound: 𝑣𝑎𝑙(𝒢⊗𝑛) ≤ 𝑜𝑛(1) [Verbitsky ‘96] via the 

Density Hales-Jewett theorem
• Restricted classes of games:

• 3-player games with binary questions [Girish-Holmgren-Mittal-Raz-Zhan]
• GHZ game [Braverman-Khot-Minzer]

• Connected games: consider graph where two inputs 𝑥 ∈ 𝑋1 ×⋯× 𝑋𝑘
and 𝑥′ ∈ 𝑋1 ×⋯× 𝑋𝑘 have an edge if 𝑥, 𝑥′ differ in one coordinate

• [Dinur-Harsha-Venkat-Yuen]: 𝑣𝑎𝑙(𝒢⊗𝑛) decays exponentially for 
connected games
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• Equivalently, for a fixed question 𝑥, the k-partite hypergraph on 
𝐴1 ×⋯× 𝐴𝑘 formed by accepting answers satisfies that: all 
connected components are complete hypergraphs
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• Theorem: If 𝒢 is a k-player projection game with val 𝒢 < 1, then 
val 𝒢⊗𝑛 ≤ exp(−Ω𝒢 𝑛 )

• Proof plan: Iteratively increase the support size of 𝒢 until its 
connected.

• Precisely: Construct a game 𝒢′ such that supp 𝒢 ⊂ supp 𝒢 ′ ,
val 𝒢⊗𝑛 𝑂(1)

≤ val 𝒢 ′
⊗𝑛

• Apply parallel repetition for connected games [DHVY’17]
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• If 𝑥, 𝑦, 𝑧 = (𝑥, 𝑦′, 𝑧′) accept based on 𝑥, 𝑦, 𝑧

• Note: 𝒢 ′ is a projection game

• Need: relate val 𝒢 ′
⊗𝑛 to val 𝒢⊗𝑛
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by Cauchy-Schwarz
• By the projection property same strategies win on 𝑥, 𝑦, 𝑧′

• Thus val 𝒢 ′
⊗𝑛

≥ val 𝒢⊗𝑛 2

• Apply this transformation repeatedly (swap roles of 𝑥, 𝑦, 𝑧)
• Eventually game is connected
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Conclusion

• Parallel repetition with exponential decay for the class of k-player 
projection games

• Proof slowly increases support size until the game is connected
• Other classes of games with strong parallel repetition results?
• “Barriers” to applying this method to general parallel repetition?



The End
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