
Constant Girth Approximation for Directed
Graphs in Subquadratic Time

Shiri Chechik, Yang P. Liu, Omer Rotem, Aaron Sidford

arXiv: 1907.10779

Contact Info:
• email: yangpliu@stanford.edu
• website: yangpliu.github.io

Part I:
Background

Talk Outline

Part I:
Background

Part II:
Algorithms

Talk Outline

Approximation Algorithms for the Girth

Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.

Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.
● Girth = minimum length cycle.

Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.
● Girth = minimum length cycle.

Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.
● Girth = minimum length cycle.

Approximation Algorithms

Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.
● Girth = minimum length cycle.

Approximation Algorithms

● [WW10] n3-𝜀 time exact algorithm implies
subcubic APSP.

Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.
● Girth = minimum length cycle.

Approximation Algorithms

● [WW10] n3-𝜀 time exact algorithm implies
subcubic APSP.

● Focus on multiplicative
approximation algorithms.

Distance Approximation and Spanners

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

Undirected
Graphs

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Undirected
Graphs

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Undirected
Graphs

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Undirected
Graphs

Spanner

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Undirected
Graphs

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Known: Every graph has a (2k-1)-spanner with O(n1+1/k) edges, O(mn1/k) time.

Conjectured to be tight.

Undirected
Graphs

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Known: Every graph has a (2k-1)-spanner with O(n1+1/k) edges, O(mn1/k) time.

Conjectured to be tight.

Undirected
Graphs

Very Similar!

Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Known: Every graph has a (2k-1)-spanner with O(n1+1/k) edges, O(mn1/k) time.

Conjectured to be tight.

[LL09,RW12,DKS17] -- best girth approximation algorithms
do not use spanners directly.

Undirected
Graphs

Very Similar!

Roundtrip Distance and Spanners

Roundtrip Distance and Spanners
Directed
Graphs

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Directed
Graphs

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Directed
Graphs

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Directed
Graphs

Complete bipartite
directed graph has n2/4
edges, but no spanners!

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Directed
Graphs

Complete bipartite
directed graph has n2/4
edges, but no spanners!

Issue: Distance metric
in directed graphs
isn’t symmetric

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric

Directed
Graphs

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric

Roundtrip metric:

c-Roundtrip spanner:
Subgraph H with

Directed
Graphs

Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric

Roundtrip metric:

c-Roundtrip spanner:
Subgraph H with

[RTZ08, CDG20] (2k-1)-roundtrip spanner exists with O(kn1+1/k
 log(nW)) edges, no

efficient algorithm.

Directed
Graphs

Requires
computing full
roundtrip metric

Girth Approximation: Undirected vs Directed

Girth Approximation: Undirected vs Directed

Authors (Quality, Runtime) Undirected/directed

[TZ05] (2k-1, mn1/k) Undirected

[RW12] (3/2, n5/3) Undirected

Trivial (1, mn) Directed

[PRSTV18] (O(k log n), mn1/k) Directed

Our Results

Authors (Quality, Runtime) Undirected/directed

[TZ05] (2k-1, mn1/k) Undirected

[RW12] (3/2, n5/3) Undirected

Trivial (1, mn) Directed

[PRSTV18] (O(k log n), mn1/k) Directed

Our Results

Authors (Quality, Runtime) Undirected/directed

[TZ05] (2k-1, mn1/k) Undirected

[RW12] (3/2, n5/3) Undirected

Trivial (1, mn) Directed

[PRSTV18] (O(k log n), mn1/k) Directed

[CLRS20] (3, mn1/2) Directed

[CLRS20] (O(k log k), mn1/k) Directed

Our Results

Authors (Quality, Runtime) Undirected/directed

[TZ05] (2k-1, mn1/k) Undirected

[RW12] (3/2, n5/3) Undirected

Trivial (1, mn) Directed

[PRSTV18] (O(k log n), mn1/k) Directed

[CLRS20] (3, mn1/2) Directed

[CLRS20] (O(k log k), mn1/k) Directed

Constant factor girth approximation in
subquadratic time! In fact, exponent

arbitrarily close to 1.

Directed Graph Primitives Matching Undirected Graphs

Directed Graph Primitives Matching Undirected Graphs

Are directed graph problems harder than undirected graph problems?

Directed Graph Primitives Matching Undirected Graphs

Are directed graph problems harder than undirected graph problems?

1. Girth approximation
2. Laplacian solving
3. Parallel reachability / shortest paths
4. Maximum flow

Part I:
Background

Part II:
Algorithms

Part I:
Background

Part II:
Algorithms

✔

Part I:
Background

Part II:
Algorithms

✔ Rest of Talk

Ball Growing for Girth Approximation and Spanners

Ball Growing for Girth Approximation and Spanners

Algorithm for (2k-1)-spanner with O(n1+1/k) edges in unweighted undirected graph.

Ball Growing for Girth Approximation and Spanners

Algorithm for (2k-1)-spanner with O(n1+1/k) edges in unweighted undirected graph.

Ball growing: Build a BFS/shortest-path tree around a vertex v in levels.

Cutting condition: Terminate ball growing when boundary is sparse.

Ball Growing for Girth Approximation and Spanners

Algorithm for (2k-1)-spanner with O(n1+1/k) edges in unweighted undirected graph.

Ball growing: Build a BFS/shortest-path tree around a vertex v in levels.

Cutting condition: Terminate ball growing when boundary is sparse.

Precisely -- B(v,d) = {vertices u in V(G) within distance d of v}.

Ball Growing for Girth Approximation and Spanners

Algorithm for (2k-1)-spanner with O(n1+1/k) edges in unweighted undirected graph.

Ball growing: Build a BFS/shortest-path tree around a vertex v in levels.

Cutting condition: Terminate ball growing when boundary is sparse.

Precisely -- B(v,d) = {vertices u in V(G) within distance d of v}.

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Analysis

Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Analysis

(2k-1)-spanner:
|B(v,d+1)| <= n1/k|B(v,d)|
will be violated for some
d <= k.

At most n1+1/k edges:
charge n1/k edges per
vertex deleted by the
condition
|B(v,d+1)| <= n1/k|B(v,d)|.

Undirected Girth Algorithms do not Directly Translate

Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the
roundtrip metric is inefficient.

Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the
roundtrip metric is inefficient.

Potential solution: Grow directed
balls inwards and outwards.

Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the
roundtrip metric is inefficient.

Potential solution: Grow directed
balls inwards and outwards.

Outball B(v,R): Vertices
u such that d(v,u) <= R.

Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the
roundtrip metric is inefficient.

Issue 2: Spanning tree on outball
doesn’t give distance information.

Potential solution: Grow directed
balls inwards and outwards.

Outball B(v,R): Vertices
u such that d(v,u) <= R.

Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the
roundtrip metric is inefficient.

Issue 2: Spanning tree on outball
doesn’t give distance information.

Potential solution: Grow directed
balls inwards and outwards.

Potential solution: Recurse on the
outball instead of just adding a
spanning tree.

Outball B(v,R): Vertices
u such that d(v,u) <= R.

Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

For vertex v, compute outballs B(v,R), B(v,2R), …, B(v, dR).

Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

For vertex v, compute outballs B(v,R), B(v,2R), …, B(v, dR).

Observation: If B(v,(d+1)R) has no cycles of length R, then no vertices in B(v,dR)
are involved in cycles of length R.

Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

For vertex v, compute outballs B(v,R), B(v,2R), …, B(v, dR).

Observation: If B(v,(d+1)R) has no cycles of length R, then no vertices in B(v,dR)
are involved in cycles of length R.

B(v,(d+1)R) V \ B(v,dR)
Recurse on overlapping
pieces B(v,(d+1)R) and V
\ B(v,dR).

Algorithm 1: Accelerated Ball Growing with Overlaps

Recurse on overlapping
pieces B(v,(d+1)R) and V
\ B(v,dR).

Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in O(mn1/k) time as long as overlap is small.

Pick d to ensure that overlap is small → naively gives O(k log n) approximation.

Recurse on overlapping
pieces B(v,(d+1)R) and V
\ B(v,dR).

Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in O(mn1/k) time as long as overlap is small.

Pick d to ensure that overlap is small → naively gives O(k log n) approximation.

Observation: When B(v,dR) is small, we can allow for large boundary overlap, as
the recursion will bottom out quicker.

Recurse on overlapping
pieces B(v,(d+1)R) and V
\ B(v,dR).

Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in O(mn1/k) time as long as overlap is small.

Pick d to ensure that overlap is small → naively gives O(k log n) approximation.

Observation: When B(v,dR) is small, we can allow for large boundary overlap, as
the recursion will bottom out quicker.

Recurse on overlapping
pieces B(v,(d+1)R) and V
\ B(v,dR).

Theorem [CLRS20]: Deterministic
O(k loglog n) girth approximation in
O(mn1/k) time.

Algorithm 2: Random Sampling and Distance Tests

Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then d(v,u) <= R and for all w with d(v,w)
<= R we have d(u,w) <= 2R.

Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then d(v,u) <= R and for all w with d(v,w)
<= R we have d(u,w) <= 2R.

Observation 2: If |B(v, R)| <= n1/2, we can check all of B(v, R).

Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then d(v,u) <= R and for all w with d(v,w)
<= R we have d(u,w) <= 2R.

Observation 2: If |B(v, R)| <= n1/2, we can check all of B(v, R).

Intuitively, use Observation 1 and random sampling to reduce to “checking” n1/2
vertices per vertex v.

Algorithm 2: Random Sampling and Distance Tests

Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S1, S2, ... , SM of size O(n1/2polylog(n)).
2. Run Dijkstra for shortest paths to / from all vertices in Si for 1 <= i <= M.

Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S1, S2, ... , SM of size O(n1/2polylog(n)).
2. Run Dijkstra for shortest paths to / from all vertices in Si for 1 <= i <= M.
3. For 1 <= i <= M and each v in V(G)
4. Ti(v) = {s in Si : d(v,s) <= R and d(s,t) <= 2R for all t in R1(v),...,Ri-1(v)}.
5. Ri(v) is a random sample of Ti(v) of size 100 log n.

Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S1, S2, ... , SM of size O(n1/2polylog(n)).
2. Run Dijkstra for shortest paths to / from all vertices in Si for 1 <= i <= M.
3. For 1 <= i <= M and each v in V(G)
4. Ti(v) = {s in Si : d(v,s) <= R and d(s,t) <= 2R for all t in R1(v),...,Ri-1(v)}.
5. Ri(v) is a random sample of Ti(v) of size 100 log n.

Intuitively, Ti(v) is subset of Si that algorithm still
thinks can be in a cycle of length R with v.

Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S1, S2, ... , SM of size O(n1/2polylog(n)).
2. Run Dijkstra for shortest paths to / from all vertices in Si for 1 <= i <= M.
3. For 1 <= i <= M and each v in V(G)
4. Ti(v) = {s in Si : d(v,s) <= R and d(s,t) <= 2R for all t in R1(v),...,Ri-1(v)}.
5. Ri(v) is a random sample of Ti(v) of size 100 log n.
6. If |TM(v)| <= 100 log n, ball grow from v.

Intuitively, Ti(v) is subset of Si that algorithm still
thinks can be in a cycle of length R with v.

Algorithm 2: Random Sampling and Distance Tests

Analysis

Algorithm 2: Random Sampling and Distance Tests

Analysis

Dijkstra to/from Si take O(mn1/2 polylog(n)) total time.

Can show |Ti(v)| <= .9 |Ti-1(v)| with high probability or find cycle of length 4R.

If |Ti(v)| <= O(log n) then ball growing from v only visits O(n1/2) vertices.

Algorithm 2: Random Sampling and Distance Tests

Analysis

Dijkstra to/from Si take O(mn1/2 polylog(n)) total time.

Can show |Ti(v)| <= .9 |Ti-1(v)| with high probability or find cycle of length 4R.

If |Ti(v)| <= O(log n) then ball growing from v only visits O(n1/2) vertices.

Result: With high probability, O(mn1/2) runtime and 4-approximation.

Get 3-approximation by being more careful.

Algorithm 3: Combination of Algo 1 and 2

Algorithm 3: Combination of Algo 1 and 2
Step 1: Sample O(n1/k polylog(n)) random vertices, run Dijkstra from them.

Algorithm 2 reduces “important vertices to check” to O(n1-1/k) per vertex.

Algorithm 3: Combination of Algo 1 and 2
Step 1: Sample O(n1/k polylog(n)) random vertices, run Dijkstra from them.

Algorithm 2 reduces “important vertices to check” to O(n1-1/k) per vertex.

Step 2: Run accelerated ball growing (Algorithm 1).

Turns out only need to take d = O(k log k) levels now!

Algorithm 3: Combination of Algo 1 and 2
Step 1: Sample O(n1/k polylog(n)) random vertices, run Dijkstra from them.

Algorithm 2 reduces “important vertices to check” to O(n1-1/k) per vertex.

Step 2: Run accelerated ball growing (Algorithm 1).

Turns out only need to take d = O(k log k) levels now!

Result: O(k log k) girth approximation in mn1/k time.

Part I:
Background

Part II:
Algorithms

✔

Part I:
Background

Part II:
Algorithms

✔ ✔

Future Directions / Problems

Future Directions / Problems

Main Open Question: Get 2k girth approximation in O(mn1/k) time.

Future Directions / Problems

Main Open Question: Get 2k girth approximation in O(mn1/k) time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no
cycle of length O(𝜀-1log n) we can remove 𝜀m edges from G and get a DAG.

Future Directions / Problems

Main Open Question: Get 2k girth approximation in O(mn1/k) time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no
cycle of length O(𝜀-1log n) we can remove 𝜀m edges from G and get a DAG.

[Seymour95] -- True for O(𝜀-1log n loglog n).

Future Directions / Problems

Main Open Question: Get 2k girth approximation in O(mn1/k) time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no
cycle of length O(𝜀-1log n) we can remove 𝜀m edges from G and get a DAG.

[Seymour95] -- True for O(𝜀-1log n loglog n).

Additional potential applications in approximation algorithm for minimum feedback
arc set, property testing, etc.

Future Directions / Problems

Main Open Question: Get 2k girth approximation in O(mn1/k) time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no
cycle of length O(𝜀-1log n) we can remove 𝜀m edges from G and get a DAG.

[Seymour95] -- True for O(𝜀-1log n loglog n).

Additional potential applications in approximation algorithm for minimum feedback
arc set, property testing, etc.

Recent Work [DW20]: 2-approximation in subquadratic time. Significantly
improved constants in the O(k log k) approximation, eg. 4-approximation in mn.414.

The End
Questions?

Contact Info:
• email: yangpliu@stanford.edu
• website: yangpliu.github.io

Constant Girth Approximation for
Directed Graphs in Subquadratic Time

Yang P. Liu

arXiv: 1907.10779

The End
Questions?

Contact Info:
• email: yangpliu@stanford.edu
• website: yangpliu.github.io

Constant Girth Approximation for
Directed Graphs in Subquadratic Time

Yang P. Liu

arXiv: 1907.10779

