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Approximation Algorithms for the Girth
Directed Graph G = (V,E)

● n vertices, m edges
● Edge e = (u -> v) has length de > 0.
● Girth = minimum length cycle.

Approximation Algorithms

● [WW10] n3-𝜀 time exact algorithm implies 
subcubic APSP.

● Focus on multiplicative 
approximation algorithms.
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Distance Approximation and Spanners
Known: (2k-1) multiplicative girth approximation in time O(mn1/k) for integers k.

c-Spanner for G: subgraph H of G with distG(u,v) <= distH(u,v) <= c*distG(u,v).

Known: Every graph has a (2k-1)-spanner with O(n1+1/k) edges, O(mn1/k) time.

Conjectured to be tight.

[LL09,RW12,DKS17] -- best girth approximation algorithms
do not use spanners directly.

Undirected 
Graphs

Very Similar!
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Roundtrip Distance and Spanners
Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric

Roundtrip metric:

c-Roundtrip spanner: 
Subgraph H with

[RTZ08, CDG20] (2k-1)-roundtrip spanner exists with O(kn1+1/k
 log(nW)) edges, no 

efficient algorithm.

Directed 
Graphs

Requires 
computing full 
roundtrip metric
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Our Results

Authors (Quality, Runtime) Undirected/directed

[TZ05] (2k-1, mn1/k) Undirected

[RW12] (3/2, n5/3) Undirected

Trivial (1, mn) Directed

[PRSTV18] (O(k log n), mn1/k) Directed

[CLRS20] (3, mn1/2) Directed

[CLRS20] (O(k log k), mn1/k) Directed

Constant factor girth approximation in 
subquadratic time! In fact, exponent 

arbitrarily close to 1.
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Directed Graph Primitives Matching Undirected Graphs

Are directed graph problems harder than undirected graph problems?

1. Girth approximation
2. Laplacian solving
3. Parallel reachability / shortest paths
4. Maximum flow
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Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that |B(v,d+1)| <= n1/k|B(v,d)|.

Add spanning tree on B(v,d+1) and delete B(v,d).

Analysis

(2k-1)-spanner: 
|B(v,d+1)| <= n1/k|B(v,d)| 
will be violated for some 
d <= k.

At most n1+1/k edges: 
charge n1/k edges per 
vertex deleted by the 
condition
|B(v,d+1)| <= n1/k|B(v,d)|.
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Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the 
roundtrip metric is inefficient.

Issue 2: Spanning tree on outball 
doesn’t give distance information.

Potential solution: Grow directed 
balls inwards and outwards.

Potential solution: Recurse on the 
outball instead of just adding a 
spanning tree.

Outball B(v,R): Vertices 
u such that d(v,u) <= R.
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Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in O(mn1/k) time as long as overlap is small.

Pick d to ensure that overlap is small → naively gives O(k log n) approximation.

Observation: When B(v,dR) is small, we can allow for large boundary overlap, as 
the recursion will bottom out quicker.

Recurse on overlapping 
pieces B(v,(d+1)R) and V 
\ B(v,dR).

Theorem [CLRS20]: Deterministic 
O(k loglog n) girth approximation in 
O(mn1/k) time.
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Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then d(v,u) <= R and for all w with d(v,w) 
<= R we have d(u,w) <= 2R.

Observation 2: If |B(v, R)| <= n1/2, we can check all of B(v, R).

Intuitively, use Observation 1 and random sampling to reduce to “checking” n1/2 
vertices per vertex v.
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Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S1, S2, ... , SM of size O(n1/2polylog(n)).
2. Run Dijkstra for shortest paths to / from all vertices in Si for 1 <= i <= M.
3. For 1 <= i <= M and each v in V(G)
4. Ti(v) = {s in Si : d(v,s) <= R and d(s,t) <= 2R for all t in R1(v),...,Ri-1(v)}.
5. Ri(v) is a random sample of Ti(v) of size 100 log n.
6. If |TM(v)| <= 100 log n, ball grow from v.

Intuitively, Ti(v) is subset of Si that algorithm still 
thinks can be in a cycle of length R with v.
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Algorithm 2: Random Sampling and Distance Tests

Analysis

Dijkstra to/from Si take O(mn1/2 polylog(n)) total time.

Can show |Ti(v)| <= .9 |Ti-1(v)| with high probability or find cycle of length 4R.

If |Ti(v)| <= O(log n) then ball growing from v only visits O(n1/2) vertices.

Result: With high probability, O(mn1/2) runtime and 4-approximation.

Get 3-approximation by being more careful.
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Algorithm 3: Combination of Algo 1 and 2
Step 1: Sample O(n1/k polylog(n)) random vertices, run Dijkstra from them.

Algorithm 2 reduces “important vertices to check” to O(n1-1/k) per vertex.

Step 2: Run accelerated ball growing (Algorithm 1).

Turns out only need to take d = O(k log k) levels now!

Result: O(k log k) girth approximation in mn1/k time.
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Future Directions / Problems

Main Open Question: Get 2k girth approximation in O(mn1/k) time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no 
cycle of length O(𝜀-1log n) we can remove 𝜀m edges from G and get a DAG.

[Seymour95] -- True for O(𝜀-1log n loglog n).

Additional potential applications in approximation algorithm for minimum feedback 
arc set, property testing, etc.

Recent Work [DW20]: 2-approximation in subquadratic time. Significantly 
improved constants in the O(k log k) approximation, eg. 4-approximation in mn.414.
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