Constant Girth Approximation for Directed Graphs in Subquadratic Time

Shiri Chechik, Yang P. Liu, Omer Rotem, Aaron Sidford

Contact Info:
• email: yangpliu@stanford.edu
• website: yangpliu.github.io
Talk Outline

Part I: Background
Talk Outline

Part I: Background

Part II: Algorithms
Approximation Algorithms for the Girth
Approximation Algorithms for the Girth

Directed Graph $G = (V,E)$

- n vertices, m edges
- Edge $e = (u \rightarrow v)$ has length $d_e > 0$.
Approximation Algorithms for the Girth

Directed Graph $G = (V, E)$

- n vertices, m edges
- Edge $e = (u \to v)$ has length $d_e > 0$.
- Girth = minimum length cycle.
Approximation Algorithms for the Girth

Directed Graph $G = (V, E)$

- n vertices, m edges
- Edge $e = (u \rightarrow v)$ has length $d_e > 0$.
- Girth = minimum length cycle.
Approximation Algorithms for the Girth

Directed Graph $G = (V,E)$

- n vertices, m edges
- Edge $e = (u \rightarrow v)$ has length $d_e > 0$.
- Girth = minimum length cycle.

Approximation Algorithms
Approximation Algorithms for the Girth

Directed Graph $G = (V, E)$

- n vertices, m edges
- Edge $e = (u \rightarrow v)$ has length $d_e > 0$.
- Girth = minimum length cycle.

Approximation Algorithms

- $[WW10]$ $n^{3-\varepsilon}$ time exact algorithm implies subcubic APSP.
Approximation Algorithms for the Girth

Directed Graph $G = (V,E)$

- n vertices, m edges
- Edge $e = (u \rightarrow v)$ has length $d_e > 0$.
- Girth = minimum length cycle.

Approximation Algorithms

- [WW10] $n^{3-\varepsilon}$ time exact algorithm implies subcubic APSP.
- Focus on multiplicative approximation algorithms.
Distance Approximation and Spanners
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $\text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq c\text{dist}_G(u,v)$.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $\text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq c \times \text{dist}_G(u,v)$.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $\text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq c \cdot \text{dist}_G(u,v)$.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $d_{G}(u,v) \leq d_{H}(u,v) \leq c d_{G}(u,v)$.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $\text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq c \cdot \text{dist}_G(u,v)$.

Known: Every graph has a (2k-1)-spanner with $O(n^{1+1/k})$ edges, $O(mn^{1/k})$ time.

Conjectured to be tight.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $\text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq c \cdot \text{dist}_G(u,v)$.

Known: Every graph has a (2k-1)-spanner with $O(n^{1+1/k})$ edges, $O(mn^{1/k})$ time.

Conjectured to be tight.
Distance Approximation and Spanners

Known: (2k-1) multiplicative girth approximation in time $O(mn^{1/k})$ for integers k.

c-Spanner for G: subgraph H of G with $\text{dist}_G(u,v) \leq \text{dist}_H(u,v) \leq c \cdot \text{dist}_G(u,v)$.

Known: Every graph has a (2k-1)-spanner with $O(n^{1+1/k})$ edges, $O(mn^{1/k})$ time.

Conjectured to be tight.

[LL09,RW12,DKS17] -- best girth approximation algorithms do not use spanners directly.

Very Similar!
Roundtrip Distance and Spanners
Roundtrip Distance and Spanners
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Complete bipartite directed graph has $n^2/4$ edges, but no spanners!
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Complete bipartite directed graph has $n^2/4$ edges, but no spanners!

Issue: Distance metric in directed graphs isn’t symmetric.
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric

Roundtrip metric: \(d_G(u \leftrightarrow v) := d_G(u, v) + d_G(v, u) \)

c-Roundtrip spanner:
Subgraph \(H \) with \(d_G(u \leftrightarrow v) \leq d_H(u \leftrightarrow v) \leq c \cdot d_G(u \leftrightarrow v) \)
Roundtrip Distance and Spanners

Question: do directed graphs have spanners?

Answer: No, not in the sense described earlier!

Issue: Distance metric in directed graphs isn’t symmetric

Roundtrip metric: \(d_G (u \leftrightarrow v) := d_G (u, v) + d_G (v, u) \)

c-Roundtrip spanner:
Subgraph H with \(d_G (u \leftrightarrow v) \leq d_H (u \leftrightarrow v) \leq c \cdot d_G (u \leftrightarrow v) \)

[RTZ08, CDG20] (2k-1)-roundtrip spanner exists with \(O(kn^{1+1/k} \log(nW)) \) edges, no efficient algorithm.
Girth Approximation: Undirected vs Directed
Girth Approximation: Undirected vs Directed

<table>
<thead>
<tr>
<th>Authors</th>
<th>(Quality, Runtime)</th>
<th>Undirected/directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TZ05]</td>
<td>(2k-1, mn^{1/k})</td>
<td>Undirected</td>
</tr>
<tr>
<td>[RW12]</td>
<td>(3/2, n^{5/3})</td>
<td>Undirected</td>
</tr>
<tr>
<td>Trivial</td>
<td>(1, mn)</td>
<td>Directed</td>
</tr>
<tr>
<td>[PRSTV18]</td>
<td>(O(k log n), mn^{1/k})</td>
<td>Directed</td>
</tr>
</tbody>
</table>
Our Results

<table>
<thead>
<tr>
<th>Authors</th>
<th>(Quality, Runtime)</th>
<th>Undirected/directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TZ05]</td>
<td>(2k-1, mn^{1/k})</td>
<td>Undirected</td>
</tr>
<tr>
<td>[RW12]</td>
<td>(3/2, n^{5/3})</td>
<td>Undirected</td>
</tr>
<tr>
<td>Trivial</td>
<td>(1, mn)</td>
<td>Directed</td>
</tr>
<tr>
<td>[PRSTV18]</td>
<td>(O(k log n), mn^{1/k})</td>
<td>Directed</td>
</tr>
</tbody>
</table>
Our Results

<table>
<thead>
<tr>
<th>Authors</th>
<th>(Quality, Runtime)</th>
<th>Undirected/directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TZ05]</td>
<td>$(2k-1, mn^{1/k})$</td>
<td>Undirected</td>
</tr>
<tr>
<td>[RW12]</td>
<td>$(3/2, n^{5/3})$</td>
<td>Undirected</td>
</tr>
<tr>
<td>Trivial</td>
<td>$(1, mn)$</td>
<td>Directed</td>
</tr>
<tr>
<td>[PRSTV18]</td>
<td>$(O(k \log n), mn^{1/k})$</td>
<td>Directed</td>
</tr>
<tr>
<td>[CLRS20]</td>
<td>$(3, mn^{1/2})$</td>
<td>Directed</td>
</tr>
<tr>
<td>[CLRS20]</td>
<td>$(O(k \log k), mn^{1/k})$</td>
<td>Directed</td>
</tr>
</tbody>
</table>
Our Results

<table>
<thead>
<tr>
<th>Authors</th>
<th>(Quality, Runtime)</th>
<th>Undirected/directed</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TZ05]</td>
<td>(2k-1, mn^{1/k})</td>
<td>Undirected</td>
</tr>
<tr>
<td>[RW12]</td>
<td>(3/2, n^{5/3})</td>
<td>Undirected</td>
</tr>
<tr>
<td>Trivial</td>
<td>(1, mn)</td>
<td>Directed</td>
</tr>
<tr>
<td>[PRSTV18]</td>
<td>(O(k log n), mn^{1/k})</td>
<td>Directed</td>
</tr>
<tr>
<td>[CLRS20]</td>
<td>(3, mn^{1/2})</td>
<td>Directed</td>
</tr>
<tr>
<td>[CLRS20]</td>
<td>(O(k log k), mn^{1/k})</td>
<td>Directed</td>
</tr>
</tbody>
</table>

Constant factor girth approximation in subquadratic time! In fact, exponent arbitrarily close to 1.
Directed Graph Primitives Matching Undirected Graphs
Directed Graph Primitives Matching Undirected Graphs

Are directed graph problems harder than undirected graph problems?
Directed Graph Primitives Matching Undirected Graphs

Are directed graph problems harder than undirected graph problems?

1. Girth approximation
2. Laplacian solving
3. Parallel reachability / shortest paths
4. Maximum flow
Part I: Background

Part II: Algorithms
Ball Growing for Girth Approximation and Spanners
Ball Growing for Girth Approximation and Spanners

Algorithm for \((2k-1)\)-spanner with \(O(n^{1+1/k})\) edges in unweighted undirected graph.
Ball Growing for Girth Approximation and Spanners

Algorithm for (2k-1)-spanner with $O(n^{1+1/k})$ edges in unweighted undirected graph.

Ball growing: Build a BFS/shortest-path tree around a vertex v in levels.

Cutting condition: Terminate ball growing when boundary is sparse.
Ball Growing for Girth Approximation and Spanners

Algorithm for \((2k-1)\)-spanner with \(O(n^{1+1/k})\) edges in unweighted undirected graph.

Ball growing: Build a BFS/shortest-path tree around a vertex \(v\) in levels.

Cutting condition: Terminate ball growing when boundary is sparse.

Precisely -- \(B(v,d) = \{\text{vertices } u \text{ in } V(G) \text{ within distance } d \text{ of } v\}\).
Ball Growing for Girth Approximation and Spanners

Algorithm for (2k-1)-spanner with $O(n^{1+1/k})$ edges in unweighted undirected graph.

Ball growing: Build a BFS/shortest-path tree around a vertex v in levels.

Cutting condition: Terminate ball growing when boundary is sparse.

Precisely -- $B(v,d) = \{\text{vertices } u \in V(G) \text{ within distance } d \text{ of } v\}$.

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.

![Diagram showing the process of ball growing with a tree structure and node placements.](image-url)
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v, d+1)| \leq n^{1/k}|B(v, d)|$.

Add spanning tree on $B(v, d+1)$ and delete $B(v, d)$.

![Graph diagram]
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v,d+1)| \leq n^{1/k}|B(v,d)|$.

Add spanning tree on $B(v,d+1)$ and delete $B(v,d)$.
Ball Growing: Example and Analysis

Algorithm: pick arbitrary v, find minimal d such that $|B(v, d+1)| \leq n^{1/k}|B(v, d)|$.

Add spanning tree on $B(v, d+1)$ and delete $B(v, d)$.

Analysis

(2k-1)-spanner:

$|B(v, d+1)| \leq n^{1/k}|B(v, d)|$ will be violated for some $d \leq k$.

At most $n^{1+1/k}$ edges:

charge $n^{1/k}$ edges per vertex deleted by the condition $|B(v, d+1)| \leq n^{1/k}|B(v, d)|$.
Undirected Girth Algorithms do not Directly Translate
Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the roundtrip metric is inefficient.
Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the roundtrip metric is inefficient.

Potential solution: Grow directed balls inwards and outwards.
Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the roundtrip metric is inefficient.

Potential solution: Grow directed balls inwards and outwards.

Outball $B(v,R)$: Vertices u such that $d(v,u) \leq R$.
Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the roundtrip metric is inefficient.

Potential solution: Grow directed balls inwards and outwards.

Issue 2: Spanning tree on outball doesn’t give distance information.

Outball \(B(v,R) \): Vertices \(u \) such that \(d(v,u) \leq R \).
Undirected Girth Algorithms do not Directly Translate

Issue 1: Growing balls in the roundtrip metric is inefficient.
Potential solution: Grow directed balls inwards and outwards.

Outball $B(v, R)$: Vertices u such that $d(v, u) \leq R$.

Issue 2: Spanning tree on outball doesn’t give distance information.
Potential solution: Recurse on the outball instead of just adding a spanning tree.
Algorithm 1: Accelerated Ball Growing with Overlaps
Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.
Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

For vertex v, compute outballs $B(v, R)$, $B(v, 2R)$, ..., $B(v, dR)$.
Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

For vertex v, compute outballs $B(v,R)$, $B(v,2R)$, ..., $B(v, dR)$.

Observation: If $B(v,(d+1)R)$ has no cycles of length R, then no vertices in $B(v,dR)$ are involved in cycles of length R.
Algorithm 1: Accelerated Ball Growing with Overlaps

Say we are searching for cycles of length R.

For vertex v, compute outballs $B(v,R)$, $B(v,2R)$, \ldots, $B(v, dR)$.

Observation: If $B(v,(d+1)R)$ has no cycles of length R, then no vertices in $B(v,dR)$ are involved in cycles of length R.

Recurse on **overlapping** pieces $B(v,(d+1)R)$ and $V \setminus B(v,dR)$.
Algorithm 1: Accelerated Ball Growing with Overlaps

Recurse on overlapping pieces $B(v,(d+1)R)$ and $V \setminus B(v,dR)$.
Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in $O(mn^{1/k})$ time as long as overlap is small.

Pick d to ensure that overlap is small \rightarrow naively gives $O(k \log n)$ approximation.

Recurse on overlapping pieces $B(v,(d+1)R)$ and $V \setminus B(v,dR)$.
Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in $O(mn^{1/k})$ time as long as overlap is small.

Pick d to ensure that overlap is small \(\rightarrow\) naively gives $O(k \log n)$ approximation.

Observation: When $B(v,dR)$ is small, we can allow for large boundary overlap, as the recursion will bottom out quicker.

Recurse on overlapping pieces $B(v,(d+1)R)$ and $V \setminus B(v,dR)$.
Algorithm 1: Accelerated Ball Growing with Overlaps

Algorithm runs in $O(mn^{1/k})$ time as long as overlap is small.

Pick d to ensure that overlap is small → naively gives $O(k \log n)$ approximation.

Observation: When $B(v,dR)$ is small, we can allow for large boundary overlap, as the recursion will bottom out quicker.

Recurse on overlapping pieces $B(v,(d+1)R)$ and $V \setminus B(v,dR)$.

Theorem [CLRS20]: Deterministic $O(k \log \log n)$ girth approximation in $O(mn^{1/k})$ time.
Algorithm 2: Random Sampling and Distance Tests
Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then $d(v,u) \leq R$ and for all w with $d(v,w) \leq R$ we have $d(u,w) \leq 2R$.
Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then $d(v,u) \leq R$ and for all w with $d(v,w) \leq R$ we have $d(u,w) \leq 2R$.

Observation 2: If $|B(v,R)| \leq n^{1/2}$, we can check all of $B(v,R)$.

Algorithm 2: Random Sampling and Distance Tests

Observation 1: If u is in a R-cycle with v, then $d(v,u) \leq R$ and for all w with $d(v,w) \leq R$ we have $d(u,w) \leq 2R$.

Observation 2: If $|B(v, R)| \leq n^{1/2}$, we can check all of $B(v, R)$.

Intuitively, use Observation 1 and random sampling to reduce to “checking” $n^{1/2}$ vertices per vertex v.
Algorithm 2: Random Sampling and Distance Tests
Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S_1, S_2, \ldots, S_M of size $O(n^{1/2}\text{polylog}(n))$.
2. Run Dijkstra for shortest paths to/from all vertices in S_i for $1 \leq i \leq M$.
Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S_1, S_2, \ldots, S_M of size $O(n^{1/2}\text{polylog}(n))$.
2. Run Dijkstra for shortest paths to / from all vertices in S_i for $1 \leq i \leq M$.
3. For $1 \leq i \leq M$ and each v in $V(G)$
 4. $T_i(v) = \{s \in S_i : d(v,s) \leq R \text{ and } d(s,t) \leq 2R \text{ for all } t \in R_1(v),\ldots,R_{i-1}(v)\}$.
5. $R_i(v)$ is a random sample of $T_i(v)$ of size $100 \log n$.
Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S_1, S_2, \ldots, S_M of size $O(n^{1/2}\text{polylog}(n))$.
2. Run Dijkstra for shortest paths to/from all vertices in S_i for $1 \leq i \leq M$.
3. For $1 \leq i \leq M$ and each v in $V(G)$
4. $T_i(v) = \{s \in S_i : d(v,s) \leq R \text{ and } d(s,t) \leq 2R \text{ for all } t \in R_1(v), \ldots, R_{i-1}(v)\}$.
5. $R_i(v)$ is a random sample of $T_i(v)$ of size $100 \log n$.

Intuitively, $T_i(v)$ is subset of S_i that algorithm still thinks can be in a cycle of length R with v.
Algorithm 2: Random Sampling and Distance Tests

Algorithm

1. Sample M sets S_1, S_2, \ldots, S_M of size $O(n^{1/2}\text{polylog}(n))$.
2. Run Dijkstra for shortest paths to/from all vertices in S_i for $1 \leq i \leq M$.
3. For $1 \leq i \leq M$ and each v in $V(G)$
 4. $T_i(v) = \{s \in S_i : d(v,s) \leq R \text{ and } d(s,t) \leq 2R \text{ for all } t \in R_1(v), \ldots, R_{i-1}(v)\}$.
5. $R_i(v)$ is a random sample of $T_i(v)$ of size $100 \log n$.
6. If $|T_M(v)| \leq 100 \log n$, ball grow from v.

Intuitively, $T_i(v)$ is subset of S_i that algorithm still thinks can be in a cycle of length R with v.
Algorithm 2: Random Sampling and Distance Tests

Analysis
Algorithm 2: Random Sampling and Distance Tests

Analysis

Dijkstra to/from S_i take $O(mn^{1/2} \text{ polylog}(n))$ total time.

Can show $|T_i(v)| \leq .9 |T_{i-1}(v)|$ with high probability or find cycle of length $4R$.

If $|T_i(v)| \leq O(\log n)$ then ball growing from v only visits $O(n^{1/2})$ vertices.
Algorithm 2: Random Sampling and Distance Tests

Analysis

Dijkstra to/from S_i take $O(mn^{1/2} \text{ polylog}(n))$ total time.

Can show $|T_i(v)| \leq .9 |T_{i-1}(v)|$ with high probability or find cycle of length $4R$.

If $|T_i(v)| \leq O(\log n)$ then ball growing from v only visits $O(n^{1/2})$ vertices.

Result: With high probability, $O(mn^{1/2})$ runtime and 4-approximation.

Get 3-approximation by being more careful.
Algorithm 3: Combination of Algo 1 and 2
Algorithm 3: Combination of Algo 1 and 2

Step 1: Sample $O(n^{1/k}\text{ polylog}(n))$ random vertices, run Dijkstra from them.

Algorithm 2 reduces “important vertices to check” to $O(n^{1-1/k})$ per vertex.
Algorithm 3: Combination of Algo 1 and 2

Step 1: Sample $O(n^{1/k} \text{ polylog}(n))$ random vertices, run Dijkstra from them. Algorithm 2 reduces “important vertices to check” to $O(n^{1-1/k})$ per vertex.

Step 2: Run accelerated ball growing (Algorithm 1).

Turns out only need to take $d = O(k \log k)$ levels now!
Algorithm 3: Combination of Algo 1 and 2

Step 1: Sample $O(n^{1/k} \text{ polylog}(n))$ random vertices, run Dijkstra from them. Algorithm 2 reduces “important vertices to check” to $O(n^{1-1/k})$ per vertex.

Step 2: Run accelerated ball growing (Algorithm 1).

Turns out only need to take $d = O(k \log k)$ levels now!

Result: $O(k \log k)$ girth approximation in $mn^{1/k}$ time.
Part I: Background

Part II: Algorithms
Part I: Background

Part II: Algorithms
Future Directions / Problems
Future Directions / Problems

Main Open Question: Get 2k girth approximation in $O(mn^{1/k})$ time.
Future Directions / Problems

Main Open Question: Get 2k girth approximation in $O(mn^{1/k})$ time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no cycle of length $O(\varepsilon^{-1}\log n)$ we can remove εm edges from G and get a DAG.
Future Directions / Problems

Main Open Question: Get 2k girth approximation in $O(mn^{1/k})$ time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no cycle of length $O(\varepsilon^{-1}\log n)$ we can remove εm edges from G and get a DAG.

[Seymour95] -- True for $O(\varepsilon^{-1}\log n \loglog n)$.
Future Directions / Problems

Main Open Question: Get 2k girth approximation in $O(mn^{1/k})$ time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no cycle of length $O(\varepsilon^{-1}\log n)$ we can remove εm edges from G and get a DAG.

[Seymour95] -- True for $O(\varepsilon^{-1}\log n \log\log n)$.

Additional potential applications in approximation algorithm for minimum feedback arc set, property testing, etc.
Future Directions / Problems

Main Open Question: Get 2k girth approximation in $O(mn^{1/k})$ time.

Approach / Problem: (Dis)prove that for a directed graph G with m edges and no cycle of length $O(\varepsilon^{-1}\log n)$ we can remove εm edges from G and get a DAG.

[Seymour95] -- True for $O(\varepsilon^{-1}\log n \loglog n)$.

Additional potential applications in approximation algorithm for minimum feedback arc set, property testing, etc.

Recent Work [DW20]: 2-approximation in subquadratic time. Significantly improved constants in the $O(k \log k)$ approximation, eg. 4-approximation in $mn^{4.14}$.
Constant Girth Approximation for Directed Graphs in Subquadratic Time

The End

Questions?

Yang P. Liu

Contact Info:
• email: yangpliu@stanford.edu
• website: yangpliu.github.io
The End

Questions?

Yang P. Liu

Contact Info:
- email: yangpliu@stanford.edu
- website: yangpliu.github.io