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Online Vector Balancing

Vectors v1, . . . , vT ∈ Rn arrive one at a time.

Assign signs ε1, . . . , εT ∈ {−1, 1} to maintain small discrepancy:
keep the quantity maxt∈[T ]

∥∥∑t
i=1 εivi

∥∥
∞ small.

Numerous applications including randomized controlled trials
(Harshaw, Sävje, Spielman, Zhang (2019)) and online envy
minimization algorithms (Jiang, Kulkarni, Singla (2019)).

In general, algorithmic discrepancy theory has been an active field
(Bansal (2010), Lovett, Meka (2012)).
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Example Online Vector Balancing

Vector Sign Partial Sum

v1
v2
v3
v4
v5
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Komlós Setting

Focus on the case where ∥vi∥2 ≤ 1.

Oblivious adversary: vi are fixed beforehand and do not change based
on the randomness of the algorithm.

Generalizes the offline setting where all the vi are revealed at the
beginning.

Ω(
√
T ) is a lower bound against adaptive adversaries: the adversary

picks the next vi to be orthogonal to previous partial sum.
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Previous Results

Komlós Conjecture

Given vectors v1, . . . , vT ∈ Rn with ∥vi∥2 ≤ 1 for all i ∈ [T ] there are

signs ε1, . . . , εT ∈ {−1, 1} such that
∥∥∥∑T

i=1 εivi

∥∥∥
∞
≤ O(1).

Komlós Conjecture for Prefixes

Given vectors v1, . . . , vT ∈ Rn with ∥vi∥2 ≤ 1 for all i ∈ [T ] there are signs
ε1, . . . , εT ∈ {−1, 1} such that

∥∥∑t
i=1 εivi

∥∥
∞ ≤ O(1) for all t ∈ [T ].

Best known bound of O(
√
logT ) for prefixes (Banaszczyk (1998)).

Polynomial time algorithm achieving O(
√
logT ) for total sum

(Bansal, Dadush, Garg (2016), Bansal, Dadush, Garg, Lovett (2018)).

Online bound of O(logT ) for prefixes (Alweiss, L., Sawhney (2021)).
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Our Results

Theorem (Partial Colorings)

In the Komlós setting there is an online algorithm against oblivious
adversaries that selects signs εi ∈ {−1, 0, 1} with at most 4% of signs
chosen as 0 that achieves discrepancy O(

√
logT ) with high probability.

Theorem ({−1, 1, 2} Colorings)
In the Komlós setting there is an online algorithm against oblivious
adversaries that selects signs εi ∈ {−1, 1, 2} that achieves discrepancy
O(
√
logT ) with high probability.

Recovers O(logT ) bound for online discrepancy with {−1, 1} signs.
Falls short of matching Banaszczyk’s bound online because of the
additional 0 (respectively 2) signs allowed.

Optimistic that O(
√
logT ) online (and prefix) discrepancy with only

{−1, 1} colors is achievable.
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Main Algorithm

Theorem (Gaussian Fixed Point Walk)

There is a Markov chain on R with steps in {−1, 0, 1} (or {−1, 1, 2}), and
at most 4% probability of picking 0 every step, whose stationary
distribution is N (0, 1).

Online Discrepancy Algorithm

For simplicity consider case where ∥vi∥2 = 1 for all i .
Initialize a starting vector Rn ∋ w0 ∼ N (0, I ). When vi arrives:

Decompose N (0, I ) in n-dimensions into one-dimensional Gaussians
in the direction of vi .

Let εi be the step size of the Gaussian Fixed Point Walk in the
theorem above.

wi ← wi−1 + εivi .
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Why the Algorithm Works

Online Discrepancy Algorithm

For simplicity consider case where ∥vi∥2 = 1 for all i .
Initialize a starting vector Rn ∋ w0 ∼ N (0, I ). When vi arrives:

Decompose N (0, I ) in n-dimensions into one-dimensional Gaussians
in the direction of vi .

Let εi be the step size of the Gaussian Fixed Point Walk in the
theorem above.

wi ← wi−1 + εivi .

By induction, the distribution of wi is N (0, I ) every step.

Distribution of
∑t

i=1 εivi is the difference of two (coupled) Gaussians
with distribution N (0, I ).

Hence
∥∥∑t

i=1 εivi
∥∥
∞ ≤ O(

√
logT ) with high probability.
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Building the Gaussian Fixed Point Walk

Goal: Build a Markov chain on R whose stationary distribution is
N (0, 1), and whose steps are {−1, 0, 1} (or {−1, 1, 2}).

Observation: Treat f + Z separately for each f ∈ [−1/2, 1/2).
We focus on f = 0: build Markov chain on Z with stationary
proportional to exp(−x2/2) for x ∈ Z.
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Parity constraint

Lemma (Parity constraint)

No Markov chain on Z with steps {−1, 1} with stationary distribution
proportional to exp(−x2/2).

Proof.

If such a chain exists, total mass on even integers and odd integers is the
same. But

∑
x even exp(−x2/2) ̸=

∑
x odd exp(−x2/2).
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Full Walk Construction

Define transition probabilities m(x) (move) and s (stay) as

m(x) :=
∑
j≥1

(−1)j−1 exp

(
−j2 + 2xj

2

)
and s :=

∑
j∈Z

(−1)j exp
(
−j2

2

)
.

Transition probabilities for x ∈ Z
For x ≥ 1 move +1 with prob. m(x), −1 with prob. 1−m(x).

For x ≤ −1, move +1 with prob. 1−m(−x), −1 with prob. m(−x).
For x = 0, move +1 with prob. m(0), −1 with prob. m(0), and stay
with prob. s.

Unique for walks where only x = 0 can stay put (take steps of size 0).

Compute m(x), s via direct algebra for walks where only x = 0 can
stay put.

Need to check: walk is well defined, eg. check s ∈ [0, 1].
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Bounding s, Triple Product Formula

s :=
∑
j∈Z

(−1)j exp
(
−j2

2

)
.

Numerically, s ≤ .0361, so at most 3.7% of signs are 0 whp.

Theorem (Jacobi Triple Product Formula)

For complex numbers |u| < 1, v ̸= 0 we have∑
j∈Z

uj
2
v2j =

∏
j≥1

(1− u2j)(1 + u2j−1v2)(1 + u2j−1v−2).

Bounding s

Take u = exp(−1/2), v =
√
−1 to get

s =
∑
j∈Z

(−1)j exp
(
−j2

2

)
=

∏
j≥1

(1− exp(−j))(1− exp(−(2j − 1)/2))2.
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Conclusion

Relations to Other Works

(Alweiss, L., Sawhney (2021)) Algorithm/analysis based on proving
that distribution of partial sum wi is spread by a Gaussian
N (0,O(logT )I ).

Gaussian Fixed Point Walk is a “limit” of this.

(Chewi, Gerber, Rigollet, Turner (2021)) Builds walk in R2 with steps
of length 1 with stationary distribution N (0, I ). Applications to
discrepancy for two-dimensional vector colorings.

Future Directions

O(
√
logT ) discrepancy bound with signs {−1, 1}?

Easier: polynomial time O(
√
logT ) discrepancy for all prefixes?

Other applications of Gaussian Fixed Point Walk?
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The End

Paper available at https://arxiv.org/pdf/2104.07009.pdf

Email: yangpliu@stanford.edu

Homepage: yangpliu.github.io
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