A Gaussian Fixed Point Random Walk

Yang P. Liu (Stanford University) Joint with Ashwin Sah (MIT), Mehtaab Sawhney (MIT)

February 4, 2022

Online Vector Balancing

- Vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ arrive one at a time.
- Assign signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ to maintain small discrepancy: keep the quantity $\max _{t \in[T]}\left\|\sum_{i=1}^{t} \varepsilon_{i} v_{i}\right\|_{\infty}$ small.

Online Vector Balancing

- Vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ arrive one at a time.
- Assign signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ to maintain small discrepancy: keep the quantity $\max _{t \in[T]}\left\|\sum_{i=1}^{t} \varepsilon_{i} v_{i}\right\|_{\infty}$ small.
- Numerous applications including randomized controlled trials (Harshaw, Sävje, Spielman, Zhang (2019)) and online envy minimization algorithms (Jiang, Kulkarni, Singla (2019)).
- In general, algorithmic discrepancy theory has been an active field (Bansal (2010), Lovett, Meka (2012)).

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}			
v_{2}			
v_{3}			
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$		
v_{2}			
v_{3}			
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}			
v_{3}			
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$		
v_{3}			
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}			
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}	$(-1,1,1,1)$		
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}	$(-1,1,1,1)$	-1	$(-1,-1,-1,-1)$
v_{4}			
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}	$(-1,1,1,1)$	-1	$(-1,-1,-1,-1)$
v_{4}	$(-1,1,-1,-1)$		
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}	$(-1,1,1,1)$	-1	$(-1,-1,-1,-1)$
v_{4}	$(-1,1,-1,-1)$	-1	$(0,-2,0,0)$
v_{5}			

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}	$(-1,1,1,1)$	-1	$(-1,-1,-1,-1)$
v_{4}	$(-1,1,-1,-1)$	-1	$(0,-2,0,0)$
v_{5}	$(-1,-1,1,1)$		

Example Online Vector Balancing

	Vector	Sign	Partial Sum
v_{1}	$(-1,1,1,-1)$	1	$(-1,1,1,-1)$
v_{2}	$(-1,-1,-1,1)$	1	$(-2,0,0,0)$
v_{3}	$(-1,1,1,1)$	-1	$(-1,-1,-1,-1)$
v_{4}	$(-1,1,-1,-1)$	-1	$(0,-2,0,0)$
v_{5}	$(-1,-1,1,1)$	-1	$(1,-1,-1,-1)$

Komlós Setting

- Focus on the case where $\left\|v_{i}\right\|_{2} \leq 1$.
- Oblivious adversary: v_{i} are fixed beforehand and do not change based on the randomness of the algorithm.

Komlós Setting

- Focus on the case where $\left\|v_{i}\right\|_{2} \leq 1$.
- Oblivious adversary: v_{i} are fixed beforehand and do not change based on the randomness of the algorithm.
- Generalizes the offline setting where all the v_{i} are revealed at the beginning.
- $\Omega(\sqrt{T})$ is a lower bound against adaptive adversaries: the adversary picks the next v_{i} to be orthogonal to previous partial sum.

Previous Results

Komlós Conjecture

Given vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leq 1$ for all $i \in[T]$ there are signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ such that $\left\|\sum_{i=1}^{T} \varepsilon_{i} v_{i}\right\|_{\infty} \leq O(1)$.

Previous Results

Komlós Conjecture

Given vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leq 1$ for all $i \in[T]$ there are signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ such that $\left\|\sum_{i=1}^{T} \varepsilon_{i} v_{i}\right\|_{\infty} \leq O(1)$.

Komlós Conjecture for Prefixes

Given vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leq 1$ for all $i \in[T]$ there are signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ such that $\left\|\sum_{i=1}^{t} \varepsilon_{i} v_{i}\right\|_{\infty} \leq O(1)$ for all $t \in[T]$.

Previous Results

Komlós Conjecture

Given vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leq 1$ for all $i \in[T]$ there are signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ such that $\left\|\sum_{i=1}^{T} \varepsilon_{i} v_{i}\right\|_{\infty} \leq O(1)$.

Komlós Conjecture for Prefixes

Given vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leq 1$ for all $i \in[T]$ there are signs $\varepsilon_{1}, \ldots, \varepsilon_{T} \in\{-1,1\}$ such that $\left\|\sum_{i=1}^{t} \varepsilon_{i} v_{i}\right\|_{\infty} \leq O(1)$ for all $t \in[T]$.

- Best known bound of $O(\sqrt{\log T})$ for prefixes (Banaszczyk (1998)).
- Polynomial time algorithm achieving $O(\sqrt{\log T})$ for total sum (Bansal, Dadush, Garg (2016), Bansal, Dadush, Garg, Lovett (2018)).
- Online bound of $O(\log T)$ for prefixes (Alweiss, L., Sawhney (2021)).

Our Results

Theorem (Partial Colorings)

In the Komlós setting there is an online algorithm against oblivious adversaries that selects signs $\varepsilon_{i} \in\{-1,0,1\}$ with at most 4% of signs chosen as 0 that achieves discrepancy $O(\sqrt{\log T})$ with high probability.

Theorem (\{-1, 1, 2\} Colorings)

In the Komlós setting there is an online algorithm against oblivious adversaries that selects signs $\varepsilon_{i} \in\{-1,1,2\}$ that achieves discrepancy $O(\sqrt{\log T})$ with high probability.

Our Results

Theorem (Partial Colorings)

In the Komlós setting there is an online algorithm against oblivious adversaries that selects signs $\varepsilon_{i} \in\{-1,0,1\}$ with at most 4% of signs chosen as 0 that achieves discrepancy $O(\sqrt{\log T})$ with high probability.

Theorem (\{-1, 1, 2\} Colorings)

In the Komlós setting there is an online algorithm against oblivious adversaries that selects signs $\varepsilon_{i} \in\{-1,1,2\}$ that achieves discrepancy $O(\sqrt{\log T})$ with high probability.

- Recovers $O(\log T)$ bound for online discrepancy with $\{-1,1\}$ signs.
- Falls short of matching Banaszczyk's bound online because of the additional 0 (respectively 2) signs allowed.
- Optimistic that $O(\sqrt{\log T})$ online (and prefix) discrepancy with only $\{-1,1\}$ colors is achievable.

Main Algorithm

Theorem (Gaussian Fixed Point Walk)

There is a Markov chain on \mathbb{R} with steps in $\{-1,0,1\}$ (or $\{-1,1,2\}$), and at most 4% probability of picking 0 every step, whose stationary distribution is $\mathcal{N}(0,1)$.

Main Algorithm

Theorem (Gaussian Fixed Point Walk)

There is a Markov chain on \mathbb{R} with steps in $\{-1,0,1\}$ (or $\{-1,1,2\}$), and at most 4% probability of picking 0 every step, whose stationary distribution is $\mathcal{N}(0,1)$.

Online Discrepancy Algorithm

For simplicity consider case where $\left\|v_{i}\right\|_{2}=1$ for all i. Initialize a starting vector $\mathbb{R}^{n} \ni w_{0} \sim \mathcal{N}(0, I)$. When v_{i} arrives:

Main Algorithm

Theorem (Gaussian Fixed Point Walk)

There is a Markov chain on \mathbb{R} with steps in $\{-1,0,1\}$ (or $\{-1,1,2\}$), and at most 4% probability of picking 0 every step, whose stationary distribution is $\mathcal{N}(0,1)$.

Online Discrepancy Algorithm

For simplicity consider case where $\left\|v_{i}\right\|_{2}=1$ for all i. Initialize a starting vector $\mathbb{R}^{n} \ni w_{0} \sim \mathcal{N}(0, I)$. When v_{i} arrives:

- Decompose $\mathcal{N}(0, I)$ in n-dimensions into one-dimensional Gaussians in the direction of v_{i}.
- Let ε_{i} be the step size of the Gaussian Fixed Point Walk in the theorem above.
- $w_{i} \leftarrow w_{i-1}+\varepsilon_{i} v_{i}$.

Why the Algorithm Works

Online Discrepancy Algorithm

For simplicity consider case where $\left\|v_{i}\right\|_{2}=1$ for all i.
Initialize a starting vector $\mathbb{R}^{n} \ni w_{0} \sim \mathcal{N}(0, l)$. When v_{i} arrives:

- Decompose $\mathcal{N}(0, I)$ in n-dimensions into one-dimensional Gaussians in the direction of v_{i}.
- Let ε_{i} be the step size of the Gaussian Fixed Point Walk in the theorem above.
- $w_{i} \leftarrow w_{i-1}+\varepsilon_{i} v_{i}$.

Why the Algorithm Works

Online Discrepancy Algorithm

For simplicity consider case where $\left\|v_{i}\right\|_{2}=1$ for all i. Initialize a starting vector $\mathbb{R}^{n} \ni w_{0} \sim \mathcal{N}(0, l)$. When v_{i} arrives:

- Decompose $\mathcal{N}(0, I)$ in n-dimensions into one-dimensional Gaussians in the direction of v_{i}.
- Let ε_{i} be the step size of the Gaussian Fixed Point Walk in the theorem above.
- $w_{i} \leftarrow w_{i-1}+\varepsilon_{i} v_{i}$.
- By induction, the distribution of w_{i} is $\mathcal{N}(0, I)$ every step.
- Distribution of $\sum_{i=1}^{t} \varepsilon_{i} v_{i}$ is the difference of two (coupled) Gaussians with distribution $\mathcal{N}(0, I)$.
- Hence $\left\|\sum_{i=1}^{t} \varepsilon_{i} v_{i}\right\|_{\infty} \leq O(\sqrt{\log T})$ with high probability.

Building the Gaussian Fixed Point Walk

- Goal: Build a Markov chain on \mathbb{R} whose stationary distribution is $\mathcal{N}(0,1)$, and whose steps are $\{-1,0,1\}$ (or $\{-1,1,2\}$).

Building the Gaussian Fixed Point Walk

- Goal: Build a Markov chain on \mathbb{R} whose stationary distribution is $\mathcal{N}(0,1)$, and whose steps are $\{-1,0,1\}$ (or $\{-1,1,2\}$).
- Observation: Treat $f+\mathbb{Z}$ separately for each $f \in[-1 / 2,1 / 2)$.
- We focus on $f=0$: build Markov chain on \mathbb{Z} with stationary proportional to $\exp \left(-x^{2} / 2\right)$ for $x \in \mathbb{Z}$.

Parity constraint

Lemma (Parity constraint)

No Markov chain on \mathbb{Z} with steps $\{-1,1\}$ with stationary distribution proportional to $\exp \left(-x^{2} / 2\right)$.

Proof.

If such a chain exists, total mass on even integers and odd integers is the same. But $\sum_{x \text { even }} \exp \left(-x^{2} / 2\right) \neq \sum_{x \text { odd }} \exp \left(-x^{2} / 2\right)$.

Full Walk Construction

Define transition probabilities $m(x)$ (move) and s (stay) as $m(x):=\sum_{j \geq 1}(-1)^{j-1} \exp \left(\frac{-j^{2}+2 x j}{2}\right)$ and $s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)$.

Full Walk Construction

Define transition probabilities $m(x)$ (move) and s (stay) as
$m(x):=\sum_{j \geq 1}(-1)^{j-1} \exp \left(\frac{-j^{2}+2 x j}{2}\right)$ and $s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)$.

Transition probabilities for $x \in \mathbb{Z}$

- For $x \geq 1$ move +1 with prob. $m(x)$, -1 with prob. $1-m(x)$.
- For $x \leq-1$, move +1 with prob. $1-m(-x),-1$ with prob. $m(-x)$.
- For $x=0$, move +1 with prob. $m(0),-1$ with prob. $m(0)$, and stay with prob. s.

Full Walk Construction

Define transition probabilities $m(x)$ (move) and s (stay) as
$m(x):=\sum_{j \geq 1}(-1)^{j-1} \exp \left(\frac{-j^{2}+2 x j}{2}\right)$ and $s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)$.

Transition probabilities for $x \in \mathbb{Z}$

- For $x \geq 1$ move +1 with prob. $m(x),-1$ with prob. $1-m(x)$.
- For $x \leq-1$, move +1 with prob. $1-m(-x),-1$ with prob. $m(-x)$.
- For $x=0$, move +1 with prob. $m(0),-1$ with prob. $m(0)$, and stay with prob. s.
- Unique for walks where only $x=0$ can stay put (take steps of size 0).
- Compute $m(x), s$ via direct algebra for walks where only $x=0$ can stay put.

Full Walk Construction

Define transition probabilities $m(x)$ (move) and s (stay) as
$m(x):=\sum_{j \geq 1}(-1)^{j-1} \exp \left(\frac{-j^{2}+2 x j}{2}\right) \quad$ and $\quad s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)$.

Transition probabilities for $x \in \mathbb{Z}$

- For $x \geq 1$ move +1 with prob. $m(x),-1$ with prob. $1-m(x)$.
- For $x \leq-1$, move +1 with prob. $1-m(-x),-1$ with prob. $m(-x)$.
- For $x=0$, move +1 with prob. $m(0),-1$ with prob. $m(0)$, and stay with prob. s.
- Unique for walks where only $x=0$ can stay put (take steps of size 0).
- Compute $m(x), s$ via direct algebra for walks where only $x=0$ can stay put.
- Need to check: walk is well defined, eg. check $s \in[0,1]$.

Bounding s, Triple Product Formula

$$
s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)
$$

Numerically, $s \leq .0361$, so at most 3.7% of signs are 0 whp.

Bounding s, Triple Product Formula

$$
s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)
$$

Numerically, $s \leq .0361$, so at most 3.7% of signs are 0 whp.
Theorem (Jacobi Triple Product Formula)
For complex numbers $|u|<1, v \neq 0$ we have

$$
\sum_{j \in \mathbb{Z}} u^{j^{2}} v^{2 j}=\prod_{j \geq 1}\left(1-u^{2 j}\right)\left(1+u^{2 j-1} v^{2}\right)\left(1+u^{2 j-1} v^{-2}\right)
$$

Bounding s, Triple Product Formula

$$
s:=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)
$$

Numerically, $s \leq .0361$, so at most 3.7% of signs are 0 whp.
Theorem (Jacobi Triple Product Formula)
For complex numbers $|u|<1, v \neq 0$ we have

$$
\sum_{j \in \mathbb{Z}} u^{j^{2}} v^{2 j}=\prod_{j \geq 1}\left(1-u^{2 j}\right)\left(1+u^{2 j-1} v^{2}\right)\left(1+u^{2 j-1} v^{-2}\right)
$$

Bounding s

Take $u=\exp (-1 / 2), v=\sqrt{-1}$ to get

$$
s=\sum_{j \in \mathbb{Z}}(-1)^{j} \exp \left(\frac{-j^{2}}{2}\right)=\prod_{j \geq 1}(1-\exp (-j))(1-\exp (-(2 j-1) / 2))^{2}
$$

Conclusion

Relations to Other Works

- (Alweiss, L., Sawhney (2021)) Algorithm/analysis based on proving that distribution of partial sum w_{i} is spread by a Gaussian $\mathcal{N}(0, O(\log T) I)$.
- Gaussian Fixed Point Walk is a "limit" of this.
- (Chewi, Gerber, Rigollet, Turner (2021)) Builds walk in \mathbb{R}^{2} with steps of length 1 with stationary distribution $\mathcal{N}(0, I)$. Applications to discrepancy for two-dimensional vector colorings.

Conclusion

Relations to Other Works

- (Alweiss, L., Sawhney (2021)) Algorithm/analysis based on proving that distribution of partial sum w_{i} is spread by a Gaussian $\mathcal{N}(0, O(\log T) I)$.
- Gaussian Fixed Point Walk is a "limit" of this.
- (Chewi, Gerber, Rigollet, Turner (2021)) Builds walk in \mathbb{R}^{2} with steps of length 1 with stationary distribution $\mathcal{N}(0, I)$. Applications to discrepancy for two-dimensional vector colorings.

Future Directions

- $O(\sqrt{\log T})$ discrepancy bound with signs $\{-1,1\}$?
- Easier: polynomial time $O(\sqrt{\log T})$ discrepancy for all prefixes?
- Other applications of Gaussian Fixed Point Walk?

The End

- Paper available at https://arxiv.org/pdf/2104.07009.pdf
- Email: yangpliu@stanford.edu
- Homepage: yangpliu.github.io

