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Why?

• Simplest directed graph problem
• Barrier towards efficient 

algorithms when edge asymmetry

Input: directed graph G = (V, E) and source vertex s.
Output: vertices T that are reachable from s in G.  
Setting: parallel and distributed models of computation
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Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

None are linear work and sublinear depth.
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Shortcutting and Hopsets

Parallel BFS uses O(m) work and O(D) depth

But: D can be up to n.

Idea: add O(m) edges to G that don’t affect reachability and reduce diameter 
to o(n), i.e. we can add edges u -> v where u can already reach v in G

Hopset: such a set of edges

Shortcut: edge in a hopset
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Algorithm for Hopsets

Theorem [UY91]: We can add   edges to G and reduce the diameter 
to             .

Pick   random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

 

Blue edges 
form a hopset.

Each blue edge 
is a shortcut.
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CONGEST model

Directed graph G.

Each vertex is a processor with infinite computational power.

Vertices only know their in and out neighbors.

Each round, a vertex can send a message of length O(log n) to each of its in 

and out neighbors (not necessarily the same message).
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Distributed Computation

Complexity is measured in number of rounds of communication.

Complexity depends on n (number of vertices) and D (undirected diameter 
of the underlying graph G)
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Distributed Reachability Problem

For source vertex s, every other vertex t must learn whether s can reach it.

s does not have to know which vertices it can reach

Every vertex knows s to start
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Distributed Reachability: What’s Known

Theorem [GU15]: There is an algorithm for reachability in the 
CONGEST model which takes      rounds

Theorem [DSHK+11]: Any algorithm for reachability in the 
CONGEST model requires       rounds. 
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Distributed Reachability: Our Results

Matches the lower bound of [DSHK+11] for 

First algorithm matching the lower bound for                for some

Our algorithm in the CONGEST model is a fairly general way of converting 
“reasonable” low work and depth parallel reachability algorithms into 
distributed algorithms.

Theorem [JLS19]: There is an algorithm for reachability in the 
CONGEST model which takes   rounds. 

Using Fineman’s algorithm instead of our 
algorithm still improves over the previous state of 

the art.
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Proof sketch of our parallel reachability algorithm.

Theorem [JLS19]: There is an algorithm which computes a hopset
with    edges which reduces the diameter to              . 
Work:  Depth:  
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How to Construct Hopsets? We will ignore strongly 
connected components.

We first give a serial linear-time construction. We’ll discuss parallelization 
later.
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[Fineman 2018] Pick a uniformly random vertex v. Call it the shortcutter.

Add a shortcut from v to every vertex it can reach (D = Descendant)

Add a shortcut to v from every vertex it can reach (A = Ancestor)

Recurse on D, A, and U = V \ D \ A = Unrelated.

How to Construct Hopsets?

 

We will ignore strongly 
connected components.
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How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D  A = Bridges

Of course, we cannot guarantee that we pick a bridge:

Path gets split among different vertex sets: we recurse on each separately.

U



How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D  A = Bridges

Call D ∪ A ∪ B the set of path-related vertices. Let LP(V) = |D| + |A| + |B|.

U
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How to Analyze?

Observation 1: If we choose a shortcutter which is unrelated to P, the 
path stays intact in one of the recursively generated subproblems.
Observation 2: If we chose a shortcutter which is path related for P, the 
path either gets shortcut to length 2 or divided among at most two 
subproblems.
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How to Analyze?
Observe that in the example below, shortcutting means that 3 of the remaining 
5 path descendants are separated from any part of the path.

Write the potential function LP(V) = |D| + |A| + |B|. We’ll track it through the 
recursion.

Key Lemma

Conditioned on picking an ancestor (resp. descendant) the expected # of 
ancestors (resp. descendants) related to any part of P decreases by ½ in 

expectation. 
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A Crude Initial Bound 

Observe |P| < LP(V) = |D| + |A| + |B| < n.

Let        be the expected shortcutted length of a path with L related vertices.

By combining our observations with the above we obtain the recursion

whenever our randomly selected shortcutter is related to P.

Corollary

Conditioned on shortcutting with a path related-vertex, the expected 
# of vertices related to any of the path decreases by ¾ in expectation. 
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As clearly                , running this recursion for r levels and optimizing gives

Corollary

Conditioned on shortcutting with a path related-vertex, the expected 
# of vertices related to any of the path decreases by ¾ in expectation. 
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of ancestors (resp. descendants) decrease by ½ in expectation. 



Thus, we get hopsets in near-linear work with diameter

Improved analysis achieves diameter                .

A Crude Initial Bound 

Key Lemma

Conditioned on picking an ancestor (resp. descendant) the expected # 
of ancestors (resp. descendants) decrease by ½ in expectation. 
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Improved Construction

Pick k random vertices v1, v2, ... , vk.

Add a shortcut from vi to every Descendant

Add a shortcut to vi from every Ancestor

How to partition and recurse
Partition vertices based on whether they 
had edges added to/from same vertices.

Recurse on each 
piece separately.
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following result:
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Optimistic Analysis

Do r levels of recursion, where we pick k path-related vertices at each level.

Path splits into k+1 pieces each time a path-related vertex is picked.

Total shortcutted path length =            .

Yields  time and diameter.

Question: What is wrong 
with this analysis?

How to ensure that we can 
pick k path related vertices?

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected 
# of ancestors (resp. descendants) decrease by 1/(k+1) in expectation. 
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Optimistic Analysis

Recall that in each step of Fineman we pick either zero or one related 
shortcutters to P.

Whenever we picked a path-related shortcutter we got our recursion, but 
when we picked something unrelated nothing happened to P.

To get similar behavior for this optimistic idea we need to always pick 0 or k 
path related shortcutters...
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Optimistic Analysis

An example bad graph: the “hidden path”. Think length of path is n0.99.

If we want to see more than one path-related vertex per round of 
shortcutting, we need to pick n0.01 shortcutters!
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Is there a way to pick lots of shortcutters in a level of recursion?
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Our Algorithm

Key Observation:
As the graph gets partitioned, there are less related pairs of 

vertices. So when we sample k random vertices, very few are 
path related in expectation.

Key Observation Part 2:
As our recursion level deepens, we need to increase the 

number of shortcutter vertices we choose.
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Our Algorithm

At recursion depth r, include every vertex into shortcutter set S with
probability    .

Shortcut to and from all vertices in S.

Partition vertices based shortcuts to/from vertices in S.

Recurse on partitions.

Key Lemma:
With high probability, after round 

r, every vertex has at most n/kr
 

total ancestors and descendants.

Total Work:
Thus, total work at depth r+1 
is m   x   kr+1/n   x   n/kr = mk

as desired.



Proving Correctness

We use the generalization of the Key Lemma from before:

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected 
# of ancestors (resp. descendants) decrease by 1/(k+1) in expectation. 
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We use a generalization of the key corollary from Fineman:

Further, if we pick k path-related shortcutters the path is divided into at most 
k+1 recursive subproblems.

Key Lemma

Conditioned on picking k path-related shortcutters the expected # of 
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Proving Correctness

We use a generalization of the key corollary from Fineman:

Further, if we pick t path-related shortcutters the path is divided into at most 
t+1 recursive subproblems.

Resulting recursion is more complicated (t is a random variable), but we can 
prove                     diameter!

Key Lemma

Conditioned on picking t path-related shortcutters the expected # of 
path related vertices decrease by 2/(t+1) in expectation. 
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Parallel Implementation

Algorithm described thus far uses full BFS traversals to find hopset: not 
parallel.

We generalize the parallel implementation in the work of Fineman.
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Parallel Implementation

Main idea: do distance-limited searches.

If we only run BFS searches to depth                    , we only pay that much in 
our parallel depth.

Goal: reduce the length of a path of length                     by a constant factor 
in expectation: we can repeat this log number of times to reduce the length 
of any path.
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Parallel Implementation

Unfortunately, distance-limited BFS is not transitive: if X can reach Y and Y 
can reach Z, X may not be able to reach Z.

Without taking this into account, distance-limited searches will cut paths 
without getting decrease in path-relevant vertices.

Fix: duplicate vertices at boundary of searches. If vertex x is near the end of 
a BFS search, place a copy of it in the ancestor/descendant set and another 
in the unrelated set.

Guarantees that there exists some copy of a recursively generated subpath 
that we didnt cut without meaning to.
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Conclusion

Nearly linear work parallel reachability algorithm in square root depth.

Almost matches the known combinatorial hopset construction.

Improved distributed reachability algorithms.

First to match the known lower bound for small polynomial hop diameter D.
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Open Problems

Improve on the known combinatorial hopset construction 
OR show lower bound?

Remove the in the depth? Break    depth bound via new methods?

Extend the machinery to parallel shortest paths?

Get any sublinear depth, subquadratic work deterministic algorithm for 
reachability?

Questions?


