
Parallel Reachability in
Square Root Depth

Yang P. Liu
Stanford University

Joint work with Arun Jambulapati, Aaron Sidford
Stanford University

Reachability Problem in Directed Graphs

Reachability Problem in Directed Graphs

Input: directed graph G = (V, E) and source vertex s.
Output: vertices T that are reachable from s in G.

Reachability Problem in Directed Graphs

Input: directed graph G = (V, E) and source vertex s.
Output: vertices T that are reachable from s in G.

Reachability Problem in Directed Graphs

Input: directed graph G = (V, E) and source vertex s.
Output: vertices T that are reachable from s in G.
Setting: parallel and distributed models of computation

Reachability Problem in Directed Graphs

Why?

• Simplest directed graph problem
• Barrier towards efficient

algorithms when edge asymmetry

Input: directed graph G = (V, E) and source vertex s.
Output: vertices T that are reachable from s in G.
Setting: parallel and distributed models of computation

Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

Graph diameter
Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

Matrix mult.

Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

Work on Parallel Reachability Before 2017

Work on Parallel Reachability Before 2017

Algorithm Work Depth

Parallel BFS O(m) O(D)

Parallel Trans. Closure

Spencer’s [Spe97]

UY [UY91]

None are linear work and sublinear depth.

Shortcutting and Hopsets

Shortcutting and Hopsets

Parallel BFS uses O(m) work and O(D) depth

Shortcutting and Hopsets

Parallel BFS uses O(m) work and O(D) depth

But: D can be up to n.

Shortcutting and Hopsets

Parallel BFS uses O(m) work and O(D) depth

But: D can be up to n.

Idea: add O(m) edges to G that don’t affect reachability and reduce diameter
to o(n), i.e. we can add edges u -> v where u can already reach v in G

Shortcutting and Hopsets

Parallel BFS uses O(m) work and O(D) depth

But: D can be up to n.

Idea: add O(m) edges to G that don’t affect reachability and reduce diameter
to o(n), i.e. we can add edges u -> v where u can already reach v in G

Hopset: such a set of edges

Shortcut: edge in a hopset

Algorithm for Hopsets

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Pick random vertices, call the set S

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Theorem [UY91]: We can add edges to G and reduce the diameter
to .
Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Theorem [UY91]: We can add edges to G and reduce the diameter
to .
Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Theorem [UY91]: We can add edges to G and reduce the diameter
to .
Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G
and reduce the diameter to

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Theorem [UY91]: We can add edges to G and reduce the diameter
to .
Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Blue edges
form a hopset.

Each blue edge
is a shortcut.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to .

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to . Work: Depth:

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to . Work: Depth:

Pick random vertices, call the set S

For all u, v in S add a shortcut u -> v if u can reach v in G.

Good depth, but
superlinear work.

Algorithm for Hopsets

Theorem [UY91]: We can add edges to G and reduce the diameter
to . Work: Depth:

Algorithm for Hopsets

Best known combinatorial construction (even ignoring algorithmic efficiency)

Theorem [UY91]: We can add edges to G and reduce the diameter
to . Work: Depth:

Fineman’s Algorithm

Fineman’s Algorithm

Theorem [Fin18]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Fineman’s Algorithm

Theorem [Fin18]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Theorem [UY91]: We can add edges to G and reduce the diameter
to . Work: Depth:

Fineman’s Algorithm

Can we match the hopset bound, i.e. nearly linear work and depth ?

Theorem [Fin18]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Theorem [UY91]: We can add edges to G and reduce the diameter
to . Work: Depth:

Our Results

Our Results

Theorem [JLS19]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Our Results

Theorem [JLS19]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Theorem [JLS19]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Distributed Computation

CONGEST model

Distributed Computation

CONGEST model

Directed graph G.

Distributed Computation

CONGEST model

Directed graph G.

Each vertex is a processor with infinite computational power.

Vertices only know their in and out neighbors.

Distributed Computation

CONGEST model

Directed graph G.

Each vertex is a processor with infinite computational power.

Vertices only know their in and out neighbors.

Each round, a vertex can send a message of length O(log n) to each of its in

and out neighbors (not necessarily the same message).

Distributed Computation

Distributed Computation

Distributed Computation

Complexity is measured in number of rounds of communication.

Distributed Computation

Complexity is measured in number of rounds of communication.

Complexity depends on n (number of vertices) and D (undirected diameter
of the underlying graph G)

Distributed Reachability Problem

Distributed Reachability Problem

For source vertex s, every other vertex t must learn whether s can reach it.

Distributed Reachability Problem

For source vertex s, every other vertex t must learn whether s can reach it.

s does not have to know which vertices it can reach

Distributed Reachability Problem

For source vertex s, every other vertex t must learn whether s can reach it.

s does not have to know which vertices it can reach

Every vertex knows s to start

Distributed Reachability: What’s Known

Distributed Reachability: What’s Known

Theorem [GU15]: There is an algorithm for reachability in the
CONGEST model which takes rounds

Distributed Reachability: What’s Known

Theorem [GU15]: There is an algorithm for reachability in the
CONGEST model which takes rounds

Theorem [DSHK+11]: Any algorithm for reachability in the
CONGEST model requires rounds.

Distributed Reachability: What’s Known

Distributed Reachability: Our Results

Theorem [JLS19]: There is an algorithm for reachability in the
CONGEST model which takes rounds.

Distributed Reachability: Our Results

Matches the lower bound of [DSHK+11] for

Theorem [JLS19]: There is an algorithm for reachability in the
CONGEST model which takes rounds.

Distributed Reachability: Our Results

Matches the lower bound of [DSHK+11] for

First algorithm matching the lower bound for for some

Theorem [JLS19]: There is an algorithm for reachability in the
CONGEST model which takes rounds.

Distributed Reachability: Our Results

Matches the lower bound of [DSHK+11] for

First algorithm matching the lower bound for for some

Our algorithm in the CONGEST model is a fairly general way of converting
“reasonable” low work and depth parallel reachability algorithms into
distributed algorithms.

Theorem [JLS19]: There is an algorithm for reachability in the
CONGEST model which takes rounds.

Distributed Reachability: Our Results

Matches the lower bound of [DSHK+11] for

First algorithm matching the lower bound for for some

Our algorithm in the CONGEST model is a fairly general way of converting
“reasonable” low work and depth parallel reachability algorithms into
distributed algorithms.

Theorem [JLS19]: There is an algorithm for reachability in the
CONGEST model which takes rounds.

Using Fineman’s algorithm instead of our
algorithm still improves over the previous state of

the art.

Organization for Remainder of the Talk

Organization for Remainder of the Talk

Remainder of the Talk:
Proof sketch of our parallel reachability algorithm.

Organization for Remainder of the Talk

Remainder of the Talk:
Proof sketch of our parallel reachability algorithm.

Theorem [JLS19]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

Theorem [JLS19]: There is an algorithm which computes a hopset
with edges which reduces the diameter to .
Work: Depth:

How to Construct Hopsets? We will ignore strongly
connected components.

We first give a serial linear-time construction. We’ll discuss parallelization
later.

[Fineman 2018] Pick a uniformly random vertex v.

How to Construct Hopsets? We will ignore strongly
connected components.

[Fineman 2018] Pick a uniformly random vertex v. Call it the shortcutter.

Add a shortcut from v to every vertex it can reach (D = Descendant)

How to Construct Hopsets? We will ignore strongly
connected components.

[Fineman 2018] Pick a uniformly random vertex v. Call it the shortcutter.

Add a shortcut from v to every vertex it can reach (D = Descendant)

Add a shortcut to v from every vertex it can reach (A = Ancestor)

How to Construct Hopsets? We will ignore strongly
connected components.

[Fineman 2018] Pick a uniformly random vertex v. Call it the shortcutter.

Add a shortcut from v to every vertex it can reach (D = Descendant)

Add a shortcut to v from every vertex it can reach (A = Ancestor)

Recurse on D, A, and U = V \ D \ A = Unrelated.

How to Construct Hopsets?

We will ignore strongly
connected components.

Fix a simple path P in the graph.

How to Analyze?

Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D A = Bridges

How to Analyze?

U

How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D A = BridgesU

Observation:
Picking a bridge to shortcut from

shortcuts the path to length 2.

How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D A = BridgesU

Observation:
Picking a bridge to shortcut from

shortcuts the path to length 2.

How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D A = Bridges

Of course, we cannot guarantee that we pick a bridge:

U

How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D A = Bridges

Of course, we cannot guarantee that we pick a bridge:

Path gets split among different vertex sets: we recurse on each separately.

U

How to Analyze?
Fix a simple path P in the graph.

Look at D = Descendant, A = Ancestor, and B = D A = Bridges

Call D ∪ A ∪ B the set of path-related vertices. Let LP(V) = |D| + |A| + |B|.

U

How to Analyze?

Observation 1: If we choose a shortcutter which is unrelated to P, the
path stays intact in one of the recursively generated subproblems.

How to Analyze?

Observation 1: If we choose a shortcutter which is unrelated to P, the
path stays intact in one of the recursively generated subproblems.
Observation 2: If we chose a shortcutter which is path related for P, the
path either gets shortcut to length 2 or divided among at most two
subproblems.

How to Analyze?
Observe that in the example below, shortcutting means that 3 of the remaining
5 path descendants are separated from any part of the path.

How to Analyze?
Observe that in the example below, shortcutting means that 3 of the remaining
5 path descendants are separated from any part of the path.

Write the potential function LP(V) = |D| + |A| + |B|. We’ll track it through the
recursion.

Key Lemma

Conditioned on picking an ancestor (resp. descendant) the expected # of
ancestors (resp. descendants) related to any part of P decreases by ½ in

expectation.

A Crude Initial Bound

Corollary

Conditioned on shortcutting with a path related-vertex, the expected
of vertices related to any of the path decreases by ¾ in expectation.

A Crude Initial Bound

Observe |P| < LP(V) = |D| + |A| + |B| < n.

Corollary

Conditioned on shortcutting with a path related-vertex, the expected
of vertices related to any of the path decreases by ¾ in expectation.

A Crude Initial Bound

Observe |P| < LP(V) = |D| + |A| + |B| < n.

Let be the expected shortcutted length of a path with L related vertices.

By combining our observations with the above we obtain the recursion

whenever our randomly selected shortcutter is related to P.

Corollary

Conditioned on shortcutting with a path related-vertex, the expected
of vertices related to any of the path decreases by ¾ in expectation.

A Crude Initial Bound

As clearly , running this recursion for r levels and optimizing gives

Corollary

Conditioned on shortcutting with a path related-vertex, the expected
of vertices related to any of the path decreases by ¾ in expectation.

Thus, we get hopsets in near-linear work with diameter

A Crude Initial Bound

Key Lemma

Conditioned on picking an ancestor (resp. descendant) the expected #
of ancestors (resp. descendants) decrease by ½ in expectation.

Thus, we get hopsets in near-linear work with diameter

Improved analysis achieves diameter .

A Crude Initial Bound

Key Lemma

Conditioned on picking an ancestor (resp. descendant) the expected #
of ancestors (resp. descendants) decrease by ½ in expectation.

How to improve?

Improved Construction

Pick k random vertices v1, v2, ... , vk.

Add a shortcut from vi to every Descendant of vi

Add a shortcut to vi from every Ancestor of vi

Improved Construction

Pick k random vertices v1, v2, ... , vk.

Add a shortcut from vi to every Descendant

Add a shortcut to vi from every Ancestor

Improved Construction

Pick k random vertices v1, v2, ... , vk.

Add a shortcut from vi to every Descendant

Add a shortcut to vi from every Ancestor

How to partition and recurse
Partition vertices based on whether they
had edges added to/from same vertices.

Improved Construction

Pick k random vertices v1, v2, ... , vk.

Add a shortcut from vi to every Descendant

Add a shortcut to vi from every Ancestor

How to partition and recurse
Partition vertices based on whether they
had edges added to/from same vertices.

Recurse on each
piece separately.

Optimistic Analysis

We start with an incorrect algorithm based on this idea. We can prove the
following result:

Optimistic Analysis

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected
of ancestors (resp. descendants) decrease by 1/(k+1) in expectation.

Optimistic Analysis

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected
of ancestors (resp. descendants) decrease by 1/(k+1) in expectation.

At every level of recursion, pick k path-related shortcutters for each piece of
the path in a subproblem.

Optimistic Analysis

At every level of recursion, pick k path-related shortcutters for each piece of
the path in a subproblem.

Path splits into k+1 pieces each time a path-related vertex is picked.

After r levels, total shortcutted path length = .

Yields time and diameter!

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected
of ancestors (resp. descendants) decrease by 1/(k+1) in expectation.

Optimistic Analysis

Do r levels of recursion, where we pick k path-related vertices at each level.

Path splits into k+1 pieces each time a path-related vertex is picked.

Total shortcutted path length = .

Yields time and diameter.

Question: What is wrong
with this analysis?

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected
of ancestors (resp. descendants) decrease by 1/(k+1) in expectation.

Optimistic Analysis

Do r levels of recursion, where we pick k path-related vertices at each level.

Path splits into k+1 pieces each time a path-related vertex is picked.

Total shortcutted path length = .

Yields time and diameter.

Question: What is wrong
with this analysis?

How to ensure that we can
pick k path related vertices?

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected
of ancestors (resp. descendants) decrease by 1/(k+1) in expectation.

Optimistic Analysis

Recall that in each step of Fineman we pick either zero or one related
shortcutters to P.

Optimistic Analysis

Recall that in each step of Fineman we pick either zero or one related
shortcutters to P.

Whenever we picked a path-related shortcutter we got our recursion, but
when we picked something unrelated nothing happened to P.

Optimistic Analysis

Recall that in each step of Fineman we pick either zero or one related
shortcutters to P.

Whenever we picked a path-related shortcutter we got our recursion, but
when we picked something unrelated nothing happened to P.

To get similar behavior for this optimistic idea we need to always pick 0 or k
path related shortcutters...

Optimistic Analysis

An example bad graph: the “hidden path”. Think length of path is n0.99.

Optimistic Analysis

An example bad graph: the “hidden path”. Think length of path is n0.99.

If we want to see more than one path-related vertex per round of
shortcutting, we need to pick n0.01 shortcutters!

Our Algorithm

Is there a way to pick lots of shortcutters in a level of recursion?

Our Algorithm

Key Observation:
As the graph gets partitioned, there are less related pairs of

vertices. So when we sample k random vertices, very few are
path related in expectation.

Our Algorithm

Key Observation:
As the graph gets partitioned, there are less related pairs of

vertices. So when we sample k random vertices, very few are
path related in expectation.

Key Observation Part 2:
As our recursion level deepens, we need to increase the

number of shortcutter vertices we choose.

Our Algorithm

At recursion depth r, include every vertex into shortcutter set S with
probability .

Shortcut to and from all vertices in S.

Our Algorithm

At recursion depth r, include every vertex into shortcutter set S with
probability .

Shortcut to and from all vertices in S.

Partition vertices based shortcuts to/from vertices in S.

Recurse on partitions.

Our Algorithm

At recursion depth r, include every vertex into shortcutter set S with
probability .

Shortcut to and from all vertices in S.

Partition vertices based shortcuts to/from vertices in S.

Recurse on partitions.

Key Lemma:
With high probability, after round

r, every vertex has at most n/kr

total ancestors and descendants.

Total Work:
Thus, total work at depth r+1
is m x kr+1/n x n/kr = mk

as desired.

Proving Correctness

We use the generalization of the Key Lemma from before:

Key Lemma Generalization

Conditioned on picking a k ancestors (resp. descendant) the expected
of ancestors (resp. descendants) decrease by 1/(k+1) in expectation.

Proving Correctness

We use a generalization of the key corollary from Fineman:

Further, if we pick k path-related shortcutters the path is divided into at most
k+1 recursive subproblems.

Key Lemma

Conditioned on picking k path-related shortcutters the expected # of
path related vertices decrease by 2/(k+1) in expectation.

Proving Correctness

We use a generalization of the key corollary from Fineman:

Further, if we pick t path-related shortcutters the path is divided into at most
t+1 recursive subproblems.

Resulting recursion is more complicated (t is a random variable), but we can
prove diameter!

Key Lemma

Conditioned on picking t path-related shortcutters the expected # of
path related vertices decrease by 2/(t+1) in expectation.

Parallel Implementation

Parallel Implementation

Algorithm described thus far uses full BFS traversals to find hopset: not
parallel.

Parallel Implementation

Algorithm described thus far uses full BFS traversals to find hopset: not
parallel.

We generalize the parallel implementation in the work of Fineman.

Parallel Implementation

Main idea: do distance-limited searches.

Parallel Implementation

Main idea: do distance-limited searches.

If we only run BFS searches to depth , we only pay that much in
our parallel depth.

Parallel Implementation

Main idea: do distance-limited searches.

If we only run BFS searches to depth , we only pay that much in
our parallel depth.

Goal: reduce the length of a path of length by a constant factor
in expectation: we can repeat this log number of times to reduce the length
of any path.

Parallel Implementation

Unfortunately, distance-limited BFS is not transitive: if X can reach Y and Y
can reach Z, X may not be able to reach Z.

Parallel Implementation

Unfortunately, distance-limited BFS is not transitive: if X can reach Y and Y
can reach Z, X may not be able to reach Z.

Without taking this into account, distance-limited searches will cut paths
without getting decrease in path-relevant vertices.

Parallel Implementation

Unfortunately, distance-limited BFS is not transitive: if X can reach Y and Y
can reach Z, X may not be able to reach Z.

Without taking this into account, distance-limited searches will cut paths
without getting decrease in path-relevant vertices.

Fix: duplicate vertices at boundary of searches. If vertex x is near the end of
a BFS search, place a copy of it in the ancestor/descendant set and another
in the unrelated set.

Parallel Implementation

Unfortunately, distance-limited BFS is not transitive: if X can reach Y and Y
can reach Z, X may not be able to reach Z.

Without taking this into account, distance-limited searches will cut paths
without getting decrease in path-relevant vertices.

Fix: duplicate vertices at boundary of searches. If vertex x is near the end of
a BFS search, place a copy of it in the ancestor/descendant set and another
in the unrelated set.

Guarantees that there exists some copy of a recursively generated subpath
that we didnt cut without meaning to.

Conclusion

Conclusion

Nearly linear work parallel reachability algorithm in square root depth.

Conclusion

Nearly linear work parallel reachability algorithm in square root depth.

Almost matches the known combinatorial hopset construction.

Conclusion

Nearly linear work parallel reachability algorithm in square root depth.

Almost matches the known combinatorial hopset construction.

Improved distributed reachability algorithms.

Conclusion

Nearly linear work parallel reachability algorithm in square root depth.

Almost matches the known combinatorial hopset construction.

Improved distributed reachability algorithms.

First to match the known lower bound for small polynomial hop diameter D.

Open Problems

Open Problems

Improve on the known combinatorial hopset construction
OR show lower bound?

Open Problems

Improve on the known combinatorial hopset construction
OR show lower bound?

Remove the in the depth? Break depth bound via new methods?

Open Problems

Improve on the known combinatorial hopset construction
OR show lower bound?

Remove the in the depth? Break depth bound via new methods?

Extend the machinery to parallel shortest paths?

Open Problems

Improve on the known combinatorial hopset construction
OR show lower bound?

Remove the in the depth? Break depth bound via new methods?

Extend the machinery to parallel shortest paths?

Get any sublinear depth, subquadratic work deterministic algorithm for
reachability?

Questions?

