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Approximate some property of a graph G with sparse subgraph H.

Spectral: 

Laplacian: 



Applications of Spectral Sparsification

Nearly Linear time Laplacian Solvers [ST04, ST14, KMP14, KMP11]

Cut and flow approximation algorithms [She09, She13, CKM+11, KLOS13, 
Peng16]

Random spanning tree generation [DKP+17]

Estimating determinants + spanning tree counts [DPPR17]
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Graph G with n vertices and m edges

Nearly linear time spectral sparsifier H with          edges [ST11, SS11]

Construction of spectral sparsifier H with       edges [BSS09, BSS12]

is optimal, even for arbitrary data structures with cut size queries 

[BSS12, CKST17]
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Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed        [ACK+16] 

Resistance sparsifiers: for all vertices u, v,                        [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices 
have equal weighted in/outdegree) [CKP+17]

Short Cycle Decomposition was introduced in [CGP+18] to 
make progress on problems such as the above
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Short Cycle Decomposition: Applications [CGP+18]

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers Improvements to the short cycle 
decomposition algorithm in [CGP+18] 
give immediate improvements for these 
applications
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Theorem [LSY19]: Algorithm running in time
  for   short

cycle decomposition 
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Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers
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Our Results

In our opinion, algorithm is simpler

Uses low diameter decomposition [LS90], instead of expander 
decomposition (used in [CGP+18])

First almost linear time Eulerian graph sparsification algorithm without 
expander decomposition.
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Quadratic time algorithm for             
short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

BFS from anywhere to find a short cycle

Delete cycle and repeat

Naive Short Cycle Decomposition
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Reduction to sparse, bounded degree graphs

Graph G with n vertices and m edges

m = 10n

Maximum degree is bounded (say at most 40).

Lemma (informal): If we can do 
short cycle decomposition on such graphs 
efficiently, we can do it on all graphs.
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Main Theorem

G has n vertices, m = 10n edges.

Maximum degree 

[LSY19]: For any integer    we can find in time 
    vertex-disjoint cycles of length         

containing     total vertices.



Preliminaries to algorithm



Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition



Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

In time  we can find vertex-disjoint cycles of 
length     containing vertices.



Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

In time  we can find vertex-disjoint cycles of 
length     containing vertices.



Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition



Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

Low diameter decomposition [LS90] (analogue to low depth tree in naive 
cycle decomposition)



Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

Low diameter decomposition [LS90] (analogue to low depth tree in naive 
cycle decomposition)

[MPX13]: For any parameter we can remove       
edges to make each remaining connected 
component have diameter 
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Algorithm description

Fix a constant 

Partition G into components G
1

, G
2

, …, G
t
, each with diameter      and 

around        vertices 

Contract the components, and recurse on the new graph H (which has         
vertices)

Pull cycles in H up to G
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Partitioning the vertices

Partition G into components G
1

, G
2

, …, G
t
, each with diameter      and 

around        vertices

Algorithm

Do a low diameter decomposition; components might have > k vertices

Build a low diameter spanning tree on each component

Partition the spanning tree into components of size approximately k

Works because graph has bounded degree
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Recursion details

Contract the components, and recurse on the new graph H (which has         
vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing   vertices

Sparsify H, proportionally reducing     and

This way, the maximum degree of H isn’t much larger than that of G
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Conclusion

We give new algorithms for short cycle decomposition

Improves over previous work ([CGP+18]) in terms of runtime, number of 
remaining edges, and cycle length

Improvements to all of:

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers and Eulerian directed graph sparsifiers
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Recent work

Parter and Yogev have an upcoming result which gets     
short cycle decomposition in time       .



Thanks for listening!


