Short Cycles via Low Diameter Decomposition

Yang Liu
Stanford University

Joint work with Sushant Sachdeva, Zejun Yu
University of Toronto
Short Cycle Decomposition
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length $\leq L$ and at most k extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length $\leq L$ and at most k extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length $\leq L$ and at most k extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length \(\leq L \) and at most k extra edges.
(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length <= L and at most k extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length \(\leq L \) and at most \(k \) extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length <= L and at most k extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length <= L and at most k extra edges.
Short Cycle Decomposition

(k, L) short cycle decomposition of an undirected, unweighted graph G

Decomposition of edges of G into edge disjoint cycles of length $\leq L$ and at most k extra edges.
Sparsification
Sparsification

Approximate some property of a graph G with sparse subgraph H.
Sparsification

Approximate some property of a graph G with sparse subgraph H.

Cut Sparsifier [BK96]: for any set S, $\text{cut}_G(S) \approx_\epsilon \text{cut}_H(S)$
Sparsification

Approximate some property of a graph G with sparse subgraph H.

Cut Sparsifier [BK96]: for any set S, $\text{cut}_G(S) \approx_\epsilon \text{cut}_H(S)$

Spanner [Che89]: for any pair of vertices u, v we have $d_G(u, v) \leq \alpha \cdot d_H(u, v)$
Sparsification

Approximate some property of a graph G with sparse subgraph H.
Sparsification

Approximate some property of a graph G with sparse subgraph H.

Spectral: $\forall x \in \mathbb{R}^n, (1 - \epsilon)x^T L_G x \leq x^T L_H x \leq (1 + \epsilon)x^T L_G x$
Sparsification

Approximate some property of a graph \(G \) with sparse subgraph \(H \).

Spectral: \(\forall x \in \mathbb{R}^n, (1 - \epsilon)x^T L_G x \leq x^T L_H x \leq (1 + \epsilon)x^T L_G x \)

Laplacian: \(L_G = D_G - A_G \)

\[
x^T L_G x = \sum_{(u,v) \in E(G)} w_{uv} (x_u - x_v)^2
\]
Applications of Spectral Sparsification

Nearly Linear time Laplacian Solvers [ST04, ST14, KMP14, KMP11]

Cut and flow approximation algorithms [She09, She13, CKM+11, KLOS13, Peng16]

Random spanning tree generation [DKP+17]

Estimating determinants + spanning tree counts [DPPR17]
Spectral Sparsification: What’s Known

Graph G with n vertices and m edges
Spectral Sparsification: What’s Known

Graph G with \(n \) vertices and \(m \) edges

Nearly linear time spectral sparsifier \(H \) with \(\tilde{O}(n\epsilon^{-2}) \) edges [ST11, SS11]
Spectral Sparsification: What’s Known

Graph G with \(n \) vertices and \(m \) edges

Nearly linear time spectral sparsifier \(H \) with \(\tilde{O}(n\epsilon^{-2}) \) edges [ST11, SS11]

Construction of spectral sparsifier \(H \) with \(O(n\epsilon^{-2}) \) edges [BSS09, BSS12]
Spectral Sparsification: What’s Known

Graph G with n vertices and m edges

Nearly linear time spectral sparsifier H with \(\tilde{O}(n\varepsilon^{-2}) \) edges [ST11, SS11]

Construction of spectral sparsifier H with \(O(n\varepsilon^{-2}) \) edges [BSS09, BSS12]

\(\Omega(n\varepsilon^{-2}) \) is optimal, even for arbitrary data structures with cut size queries [BSS12, CKST17]
Spectral Sparsification: new directions
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\varepsilon x^T L_H x$ [ACK+16]

[JS18]: Data structure with $\tilde{O}(n\varepsilon^{-1})$ size
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_\epsilon \text{Reff}_H(u, v)$ [DKW15]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ \cite{ACK16}

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_\epsilon \text{Reff}_H(u, v)$ \cite{DKW15}

Effective resistance (Reff) is quadratic form wrt Laplacian pseudoinverse
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\varepsilon x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u,v) \approx_\varepsilon \text{Reff}_H(u,v)$ [DKW15]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_\epsilon \text{Reff}_H(u, v)$ [DKW15]

[DKW15]: Conjecture that H only needs $\tilde{O}(n \epsilon^{-1})$ edges
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_\epsilon \text{Reff}_H(u, v)$ [DKW15]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_{\epsilon} \text{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_\epsilon \text{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]

[CKP+17]: Applications to Laplacian solvers for directed graphs
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_\epsilon x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_\epsilon \text{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]
Spectral Sparsification: new directions

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\text{Reff}_G(u, v) \approx_{\epsilon} \text{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]

Short Cycle Decomposition was introduced in [CGP+18] to make progress on problems such as the above
Short Cycle Decomposition: What’s known
Short Cycle Decomposition: What’s known

Theorem [CGP+18]: There is an algorithm running in time $m \cdot \exp(O(\log n)^{3/4})$ which produces a $\left(n \cdot \exp(O(\log n)^{1/2}, \exp(O(\log n)^{3/4})\right)$ short cycle decomposition.
Theorem [CGP+18]: There is an algorithm running in time $m \cdot \exp(O(\log n)^{3/4})$ which produces a $(n \cdot \exp(O(\log n)^{1/2}, \exp(O(\log n)^{3/4}))$ short cycle decomposition.
Short Cycle Decomposition: What’s known

Theorem [CGP+18]: There is an algorithm running in time $m \cdot \exp(O(\log n)^{\frac{3}{4}})$ which produces a $\left(n \cdot \exp(O(\log n)^{\frac{3}{2}}, \exp(O(\log n)^{\frac{3}{4}}) \right)$ short cycle decomposition.
Short Cycle Decomposition: Applications [CGP+18]
Short Cycle Decomposition: Applications [CGP+18]

Graphical spectral sketches and Resistance Sparsifiers
Short Cycle Decomposition: Applications [CGP+18]

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances
Short Cycle Decomposition: Applications [CGP+18]

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers
Short Cycle Decomposition: Applications [CGP+18]

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers
Short Cycle Decomposition: Applications [CGP+18]

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers

Improvements to the short cycle decomposition algorithm in [CGP+18] give immediate improvements for these applications.
Our Results
Our Results

Theorem [LSY19]: For any constant $\delta \leq \frac{1}{2}$, algorithm running in time $O(mn^\delta)$ for $(O(n), O(\log n)^{\frac{1}{\delta} - 1})$ short cycle decomposition
Our Results

Theorem [LSY19]: For any constant $\delta \leq \frac{1}{2}$, algorithm running in time $O(mn^\delta)$ for $(O(n), O(\log n)^{\frac{1}{\delta}-1})$ short cycle decomposition

Theorem [LSY19]: Algorithm running in time $m \cdot \exp(O(\log n)^{\frac{1}{2}})$ for $(O(n), \exp(O(\log n)^{\frac{1}{2}}))$ short cycle decomposition
Our Results
Our Results

Improvements to all of:
Our Results

Improvements to all of:

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers
Our Results
Our Results

In our opinion, algorithm is simpler
Our Results

In our opinion, algorithm is simpler

Uses low diameter decomposition [LS90], instead of expander decomposition (used in [CGP+18])
Our Results

In our opinion, algorithm is simpler

Uses low diameter decomposition [LS90], instead of expander decomposition (used in [CGP+18])

First almost linear time Eulerian graph sparsification algorithm without expander decomposition.
Naive Short Cycle Decomposition
Naive Short Cycle Decomposition

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition
Naive Short Cycle Decomposition

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)

BFS from anywhere to find a short cycle
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\)
short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)

BFS from anywhere to find a short cycle
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)

BFS from anywhere to find a short cycle
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)

BFS from anywhere to find a short cycle
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)

BFS from anywhere to find a short cycle
Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3\)

BFS from anywhere to find a short cycle
Naive Short Cycle Decomposition

Quadratic time algorithm for \((2n, 2 \log n)\) short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree \(\geq 3 \)

BFS from anywhere to find a short cycle

Delete cycle and repeat
Reduction to sparse, bounded degree graphs
Reduction to sparse, bounded degree graphs

Graph G with n vertices and m edges
Reduction to sparse, bounded degree graphs

Graph G with n vertices and m edges

m = 10n
Reduction to sparse, bounded degree graphs

Graph G with n vertices and m edges

$m = 10n$

Maximum degree is bounded (say at most 40).
Reduction to sparse, bounded degree graphs

Graph G with n vertices and m edges

$m = 10n$

Maximum degree is bounded (say at most 40).

Lemma (informal): If we can do $(O(n), O(\log n)^c)$ short cycle decomposition on such graphs efficiently, we can do it on all graphs.
Main Theorem
Main Theorem

G has \(n \) vertices, \(m = 10n \) edges.
Main Theorem

G has \(n \) vertices, \(m = 10n \) edges.

Maximum degree \(\Delta \)
Main Theorem

G has n vertices, m = 10n edges.

Maximum degree Δ

[LSY19]: For any integer $c \geq 1$ we can find in time $O(500^c mn^{\frac{1}{c+1}})$ vertex-disjoint cycles of length $O((\log n)^c)$ containing $\frac{m}{10\Delta}$ total vertices.
Preliminaries to algorithm
Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition
Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

In time $O(n^2)$ we can find vertex-disjoint cycles of length $O(\log n)$ containing $\frac{m}{10\Delta}$ vertices.
Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

In time $O(n^{3/2})$ we can find vertex-disjoint cycles of length $O(\log n)$ containing $\frac{m}{10\Delta}$ vertices.
Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition
Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

Low diameter decomposition [LS90] (analogue to low depth tree in naive cycle decomposition)
Preliminaries to algorithm

Vertex-disjoint analogue of naive cycle decomposition

Low diameter decomposition [LS90] (analogue to low depth tree in naive cycle decomposition)

[MPX13]: For any parameter β we can remove βm edges to make each remaining connected component have diameter $O(\beta^{-1} \log n)$
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction
Contraction

Pull back
Contraction

Pull back
Algorithm description
Algorithm description

Fix a constant $k = n^{\frac{1}{c+1}}$
Algorithm description

Fix a constant $k = \frac{1}{n^{c+1}}$

Partition G into components G_1, G_2, \ldots, G_t, each with diameter $O(\log n)$ and around k vertices.
Algorithm description

Fix a constant $k = n^{\frac{1}{c+1}}$

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)
Algorithm description

Fix a constant $k = n^{\frac{1}{c+1}}$

Partition G into components G_1, G_2, \ldots, G_t, each with diameter $O(\log n)$ and around k vertices

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Pull cycles in H up to G
Partitioning the vertices
Partitioning the vertices

Partition G into components G_1, G_2, \ldots, G_t, each with diameter $O(\log n)$ and around k vertices.
Partitioning the vertices

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices.

Algorithm
Partitioning the vertices

Partition G into components G_1, G_2, \ldots, G_t, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have $> k$ vertices
Partitioning the vertices

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have > k vertices

Build a low diameter spanning tree on each component
Partitioning the vertices

Partition G into components G_1, G_2, \ldots, G_t, each with diameter $O(\log n)$ and around k vertices.

Algorithm

Do a low diameter decomposition; components might have $> k$ vertices.

Build a low diameter spanning tree on each component.

Partition the spanning tree into components of size approximately k.

Partitioning the vertices

Partition G into components G_1, G_2, ..., G_t, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have $> k$ vertices

Build a low diameter spanning tree on each component

Partition the spanning tree into components of size approximately k

Works because graph has bounded degree
Recursion details
Recursion details

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)
Recursion details

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges
Recursion details

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing $\frac{m}{10\Delta}$ vertices
Recursion details

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing $\frac{m}{10\Delta}$ vertices

Sparsify H, proportionally reducing m and Δ
Recursion details

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing $\frac{m}{10\Delta}$ vertices

Sparsify H, proportionally reducing m and Δ

This way, the maximum degree of H isn’t much larger than that of G
Conclusion

We give new algorithms for short cycle decomposition
Conclusion

We give new algorithms for short cycle decomposition

Improves over previous work ([CGP+18]) in terms of runtime, number of remaining edges, and cycle length
Conclusion

We give new algorithms for short cycle decomposition

Improves over previous work ([CGP+18]) in terms of runtime, number of remaining edges, and cycle length

Improvements to all of:

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers and Eulerian directed graph sparsifiers
Recent work
Recent work

Parter and Yogev have an upcoming result which gets $(O(n \log n), O(\log^2 n))$ short cycle decomposition in time $n^{1+o(1)}$.
Thanks for listening!