Short Cycles via Low Diameter Decomposition

Yang Liu Stanford University

Joint work with Sushant Sachdeva, Zejun Yu University of Toronto

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

(k, L) short cycle decomposition of an undirected, unweighted graph G

Approximate some property of a graph G with sparse subgraph H.

Approximate some property of a graph G with sparse subgraph H.

Cut Sparsifier [BK96]: for any set S, $\operatorname{cut}_G(S) \approx_{\epsilon} \operatorname{cut}_H(S)$

Approximate some property of a graph G with sparse subgraph H.

Cut Sparsifier [BK96]: for any set S, $\operatorname{cut}_G(S) \approx_{\epsilon} \operatorname{cut}_H(S)$

Spanner [Che89]: for any pair of vertices u, v we have $d_G(u,v) \leq lpha \cdot d_H(u,v)$

Approximate some property of a graph G with sparse subgraph H.

Approximate some property of a graph G with sparse subgraph H.

Spectral: $orall x \in \mathbb{R}^n, (1-\epsilon)x^TL_Gx \leq x^TL_Hx \leq (1+\epsilon)x^TL_Gx$

Approximate some property of a graph G with sparse subgraph H.

Spectral: $orall x \in \mathbb{R}^n, (1-\epsilon)x^TL_Gx \leq x^TL_Hx \leq (1+\epsilon)x^TL_Gx$ Laplacian: $L_G = D_G - A_G$

$$x^T L_G x = \sum_{(u,v) \in E(G)} w_{uv} (x_u - x_v)^2$$

Applications of Spectral Sparsification

Nearly Linear time Laplacian Solvers [ST04, ST14, KMP14, KMP11]

Cut and flow approximation algorithms [She09, She13, CKM+11, KLOS13, Peng16]

Random spanning tree generation [DKP+17]

Estimating determinants + spanning tree counts [DPPR17]

Graph G with n vertices and m edges

Graph G with n vertices and m edges

Nearly linear time spectral sparsifier H with $ilde{O}(n\epsilon^{-2})$ edges [ST11, SS11]

Graph G with n vertices and m edges

Nearly linear time spectral sparsifier H with $ilde{O}(n\epsilon^{-2})$ edges [ST11, SS11]

Construction of spectral sparsifier H with $O(n\epsilon^{-2})$ edges [BSS09, BSS12]

Graph G with n vertices and m edges

Nearly linear time spectral sparsifier H with $ilde{O}(n\epsilon^{-2})$ edges [ST11, SS11]

Construction of spectral sparsifier H with $O(n\epsilon^{-2})$ edges [BSS09, BSS12]

 $\Omega(n\epsilon^{-2})$ is optimal, even for arbitrary data structures with cut size queries [BSS12, CKST17]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

[JS18]: Data structure with $ilde{O}(n\epsilon^{-1})$ size

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Effective resistance (Reff) is quadratic form wrt Laplacian pseudoinverse

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

[DKW15]: Conjecture that H only needs $ilde{O}(n\epsilon^{-1})$ edges

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]

[CKP+17]: Applications to Laplacian solvers for directed graphs

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]

Spectral Sketches: for an unknown fixed $x \in \mathbb{R}^n$, $x^T L_G x \approx_{\epsilon} x^T L_H x$ [ACK+16]

Resistance sparsifiers: for all vertices u, v, $\operatorname{Reff}_G(u, v) \approx_{\epsilon} \operatorname{Reff}_H(u, v)$ [DKW15]

Sparsifying Eulerian directed graphs (directed graphs where all vertices have equal weighted in/outdegree) [CKP+17]

Short Cycle Decomposition was introduced in [CGP+18] to make progress on problems such as the above

Theorem [CGP+18]: There is an algorithm running in time $m \cdot \exp(O(\log n)^{\frac{3}{4}})$ which produces a $\left(n \cdot \exp(O(\log n)^{\frac{1}{2}}, \exp(O(\log n)^{\frac{3}{4}})\right)$ short cycle decomposition.

Theorem [CGP+18]: There is an algorithm running in time $m \cdot \exp(O(\log n)^{\frac{3}{4}})$ which produces a $\left(n \cdot \exp(O(\log n)^{\frac{1}{2}}, \exp(O(\log n)^{\frac{3}{4}})\right)$ short cycle decomposition.

Graphical spectral sketches and Resistance Sparsifiers

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers

Improvements to the short cycle decomposition algorithm in [CGP+18] give immediate improvements for these applications

Theorem [LSY19]: For any constant $\delta \leq \frac{1}{2}$, algorithm running in time $O(mn^{\delta})$ for $(O(n), O(\log n)^{\frac{1}{\delta}-1})$ short cycle decomposition

Theorem [LSY19]: For any constant $\delta \leq \frac{1}{2}$, algorithm running in time $O(mn^{\delta})$ for $(O(n), O(\log n)^{\frac{1}{\delta}-1})$ short cycle decomposition

Theorem [LSY19]: Algorithm running in time $m \cdot \exp(O(\log n)^{\frac{1}{2}})$ for $(O(n), \exp(O(\log n)^{\frac{1}{2}}))$ short cycle decomposition

Improvements to all of:

Improvements to all of:

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers

Eulerian directed graph sparsifiers

In our opinion, algorithm is simpler

In our opinion, algorithm is simpler

Uses low diameter decomposition [LS90], instead of expander decomposition (used in [CGP+18])

In our opinion, algorithm is simpler

Uses low diameter decomposition [LS90], instead of expander decomposition (used in [CGP+18])

First almost linear time Eulerian graph sparsification algorithm without expander decomposition.

Quadratic time algorithm for $(2n, 2\log n)$ short cycle decomposition

Quadratic time algorithm for $(2n, 2\log n)$ short cycle decomposition

Intuition: low depth spanning trees

Quadratic time algorithm for $(2n, 2\log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

Quadratic time algorithm for $(2n, 2 \log n)$ short cycle decomposition

Intuition: low depth spanning trees

Delete vertices until all vertices have degree >= 3

BFS from anywhere to find a short cycle

Delete cycle and repeat

Graph G with n vertices and m edges

Graph G with n vertices and m edges

m = 10n

Graph G with n vertices and m edges

m = 10n

Maximum degree is bounded (say at most 40).

Graph G with n vertices and m edges

m = 10n

Maximum degree is bounded (say at most 40).

Lemma (informal): If we can do $(O(n), O(\log n)^c)$ short cycle decomposition on such graphs efficiently, we can do it on all graphs.

G has n vertices, m = 10n edges.

G has n vertices, m = 10n edges.

Maximum degree Δ

G has n vertices, m = 10n edges.

Maximum degree Δ

[LSY19]: For any integer $c \ge 1$ we can find in time $O(500^c mn^{\frac{1}{c+1}})$ vertex-disjoint cycles of length $O(\log n)^c$ containing $\frac{m}{10\Delta}$ total vertices.

Vertex-disjoint analogue of naive cycle decomposition

Vertex-disjoint analogue of naive cycle decomposition

In time $O(n^2)$ we can find vertex-disjoint cycles of length $O(\log n)$ containing $\frac{m}{10\Delta}$ vertices.

Vertex-disjoint analogue of naive cycle decomposition

In time $O(n^{\frac{3}{2}})$ we can find vertex-disjoint cycles of length $O(\log n)$ containing $\frac{m}{10\Delta}$ vertices.

Vertex-disjoint analogue of naive cycle decomposition

Vertex-disjoint analogue of naive cycle decomposition

Low diameter decomposition [LS90] (analogue to low depth tree in naive cycle decomposition)

Vertex-disjoint analogue of naive cycle decomposition

Low diameter decomposition [LS90] (analogue to low depth tree in naive cycle decomposition)

[MPX13]: For any parameter β we can remove βm edges to make each remaining connected component have diameter $O(\beta^{-1}\log n)$

Fix a constant $k = n^{rac{1}{c+1}}$

Fix a constant $k = n^{\frac{1}{c+1}}$

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Fix a constant $k = n^{\frac{1}{c+1}}$

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Fix a constant $k = n^{\frac{1}{c+1}}$

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Pull cycles in H up to G

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Algorithm

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have > k vertices

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have > k vertices

Build a low diameter spanning tree on each component

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have > k vertices

Build a low diameter spanning tree on each component

Partition the spanning tree into components of size approximately k

Partition G into components $G_1, G_2, ..., G_t$, each with diameter $O(\log n)$ and around k vertices

Algorithm

Do a low diameter decomposition; components might have > k vertices

Build a low diameter spanning tree on each component

Partition the spanning tree into components of size approximately k

Works because graph has bounded degree

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing $\frac{m}{10\Delta}$ vertices

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing $\frac{m}{10\Lambda}$ vertices

Sparsify H, proportionally reducing m and Δ

Contract the components, and recurse on the new graph H (which has $\frac{n}{k}$ vertices)

Issue: H still has m edges

Fix: Recall that we are looking for cycles containing $\frac{m}{10\Delta}$ vertices

Sparsify H, proportionally reducing m and Δ

This way, the maximum degree of H isn't much larger than that of G

We give new algorithms for short cycle decomposition

We give new algorithms for short cycle decomposition

Improves over previous work ([CGP+18]) in terms of runtime, number of remaining edges, and cycle length

We give new algorithms for short cycle decomposition

Improves over previous work ([CGP+18]) in terms of runtime, number of remaining edges, and cycle length

Improvements to all of:

Graphical spectral sketches and Resistance Sparsifiers

Estimating effective resistances

Degree-preserving sparsifiers and Eulerian directed graph sparsifiers

Recent work

Recent work

Parter and Yogev have an upcoming result which gets $(O(n \log n), O(\log^2 n))$ short cycle decomposition in time $n^{1+o(1)}$.

Thanks for listening!