Exponential Separation Between AMP and MAP

Tom Gur, Yang P. Liu, Ron Rothblum

Arthur

Introduction: Property Testing

- A property Π_n is a subset of functions f: $D_n \rightarrow R_n$.
- Let F_n denote the family of *all* functions f: $D_n \rightarrow R_n$.
- Input is either in Π_n or ε -far from Π_n .
- Make q queries to f, then decide whether f in Π_n .

Property Testing: **Permutation** Property

Not a permutation!

Property Testing: Permutation Property

• For fixed ε , testing for the **Permutation** property takes time $\Theta(n^{1/2})$.

Introduction: MAP and AMP

- MAP = Merlin-Arthur proof of proximity
- AMP = Arthur-Merlin proof of proximity
- MAP and AMP both denote property testing with a proof system.
- MAPs are the analog of MA.
- AMPs are the analog of AM.

Definitions: MAP

- Completeness: for any f in Π_n we have $\exists w \text{ such that } \Pr[V(f, w) = 1] \ge \frac{2}{3}$
- Soundness: for any f that is ε -far from Π_n $\forall w$ we have that $\Pr[V(f, w) = 1] \leq \frac{1}{3}$

Definitions: AMP

- Completeness: for any f in Π_n we have $\Pr_r [\exists w \text{ such that } V(f, w, r) = 1] \ge \frac{2}{3}$
- Soundness: for any f that is ε -far from Π_n

 $\Pr_r[\exists w \text{ such that } V(f, w, r) = 1] \leq \frac{1}{3}$

Definition: MAP and AMP

- In both models, we define the *complexity* of the MAP/AMP to be the sum of the:
 - proof length in the worst case
 - number of queries needed in the worst case.

maybe put something here?

Exponential Separation

- There is an AMP for the **Permutation** property that takes complexity O(log n).
- Every MAP for the **Permutation** property requires time $\Omega(n^{1/4})$.
- Corollary: there is an exponential separation between the classes MAP and AMP.

Proof: AMP Protocol

- Lemma: $|Im(f)| \le n(1-\epsilon)$ if f is ϵ -far from a permutation
- Fix $k = O(1/\epsilon)$.
- Arthur randomly generates $x_1, x_2, ..., x_k$ in [n].
- Ask Merlin for s_1, s_2, \dots, s_k such that $f(s_i) = x_i$
- Query f to check $f(s_i) = x_i$

MAP Lower Bound

- Goal: Every MAP for the **Permutation** property requires time $\Omega(n^{1/4})$.
- Question: What properties of **Permutation** allow us to show MAP lower bounds on it?

Independence

- Property Π_n of functions f: $D_n \rightarrow R_{n.}$
- Π_n is *k*-wise independent if for all distinct indices i₁, i₂,
 ..., i_k in D_n:
- the k-tuple (f(i₁), f(i₂), ..., f(i_k)) is uniform over (R_n)^k over functions f in Π_n .

Independence

- Theorem: a k-wise independent property requires complexity k for property testing.
- [FGL14]: a k-wise independent property requires MAPs of complexity k^{1/2}.

Relaxed Independence

- Π_n is *relaxed k-wise independent* if for all distinct indices i₁, i₂, ..., i_k in D_n and all k-tuples of values t₁, t₂, ..., t_k in R_n:
- the probability that $f(i_1) = t_1, ..., f(i_k) = t_k$ is at most $C/|R_n|^k$ for some constant C

Relaxed Independence

 Theorem: A relaxed k-wise independent requires complexity Ω(k)

Relation to **Permutation**

- Permutation is not k-wise independent for any k > 1.
- **Permutation** is relaxed n^{1/2}/10-wise independent
- **Permutation** requires property testers of complexity $\Omega(n^{1/2})$.

Sparsity

- The property of all functions is easily testable despite being independent.
- Need some measure of non-degeneracy.
- Say that a property Π_n of F_n (all functions f: $D_n \rightarrow R_n$) is *sparse* if exponentially few functions f in F_n are ϵ -close to Π_n .

Main Theorem

- Theorem: If a property is relaxed k-wise independent and sparse, then it requires MAP complexity $\Omega(k^{1/2})$.
- Corollary: **Permutation** requires MAP complexity Ω (n^{1/4}).

Discussion

- Question: Does every k-wise independent property requires MAPs of size Ω(k)?
- Question: Does **permutation** requires MAPs of size $\Omega(n^{1/2})$?