Maximum Flow and Minimum-
Cost Flow in Almost Linear Time

Li Chen (Georgia Tech), Yang P. Liu (Stanford University)
Joint with Rasmus Kyng, Richard Peng, Maximilian Probst Gutenberg,
Sushant Sachdeva

Talk Outline

Part 2: Using Tree

Part 1: Problem History Embeddings to Find

Approx. Min-Ratio Cycles

and Our Results

Maximum Flow Problem

* Directed graph G = (V, E) source s, sink t, capacities u, = 0.
* m edges, n vertices, maximum capacity U.

Maximum Flow Problem

* Directed graph G = (V, E) source s, sink t, capacities u, = 0.
* m edges, n vertices, maximum capacity U.

Goal: Route maximum
flow from s -> t.

Think of flow as a
vector f € RE,i.e.areal
vector on the edges

Maximum Flow Problem

* Directed graph G = (V, E) source s, sink t, capacities u, = 0.
* m edges, n vertices, maximum capacity U.

Demand constraint: all
vertices except s, t have equal
incoming/outgoing flow

Goal: Route maximum
flow from s -> t.

Total flow: number of units

leaving s / entering t

Think of flow as a
vector f € RE,i.e.areal
vector on the edges

Capacity constraint: amount
of flow on edge e in [0, u,]

Why Study Flows?

* Graph opt: Flows are a broad class of graph optimization problems.
* Route 1 unit from s to t while minimizing some cost given by convex
functions on edges, X.cqges e COSte(fe)-

* Covers minimum-cost flow, optimal transport, isotonic regression, p-
norm flows, regularized optimal transport, matrix scaling, etc.

Why Study Flows?

* Graph opt: Flows are a broad class of graph optimization problems.
* Route 1 unit from s to t while minimizing some cost given by convex
functions on edges, X.cqges e COSte(fe)-

* Covers minimum-cost flow, optimal transport, isotonic regression, p-
norm flows, regularized optimal transport, matrix scaling, etc.

Our results cover all the problems mentioned above.

* Direct applications: Bipartite matching, densest subgraph, Gomory-
Hu trees / connectivity, negative-weight shortest path

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GNS8O, ST83] O(mn log n) O(n) O(m)
[GR98] O(m3/2) O(m?/2) O(m)
[DS08] O(m3/2) O(m1/2) O(m)

[M13, M16] (~)(m1°/7U1/7) (N)(m3/7U1/7) C)(m)
[KLS20] m?4/3+o(1)y1/3 m1/3+o(1)y1/3 ml+o(1)
[LS14] O(mnt/2) O(n/2) O(m)

[BLNPSSSW?20, O(m + n3/2) O(n?/2) O(m/n/2 + n)

BLLSSSW21]

[GLP21, O(m3/2-1/58) B(m1/2) O(m1-1/58)

BGJLLPS22]

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GNS8O, ST83] O(mn log n) O(n) O(m)
[GR98] O(m3/2) O(m?/2) O(m)
[DS08] O(m3/2) O(m1/2) O(m)

[M13, M16] (~)(m1°/7U1/7) (N)(m3/7U1/7) C)(m)
[KLS20] m?4/3+o(1)y1/3 m1/3+o(1)y1/3 ml+o(1)
[LS14] O(mnt/2) O(n/2) O(m)

[BLNPSSSW?20, O(m + n3/2) O(n?/2) O(m/n/2 + n)

BLLSSSW21]

[GLP21, O(m3/2-1/58) B(m1/2) O(m1-1/58)

BGJLLPS22]

[CKLPPS22] m+o(d (1) hold)

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m3/2)

6(m10/7U1/7)

m?4/3+o(1)|y1/3
O(mn'/2)

O(m + n3/2)
O (m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
(”)(nl/z)
O(n1/2)

6(m2)

m1+0(1)

O(m)
O(m)
O(m)
O(m)
m+o(1)
O(m)
O(m/n/2 + n)

B(m1-1/58)

mO(l)

(——

Augmenting paths
/ blocking flows

and dynamic tree
data structure.

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m3/2)

6(m10/7U1/7)

m?4/3+o(1)|y1/3
O(mn'/2)

O(m + n3/2)
O (m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
(”)(nl/z)
O(n1/2)

6(m2)

m1+0(1)

O(m)
O(m)
O(m)
O(m)
m+o(1)
O(m)
O(m/n/2 + n)

B(m1-1/58)

mO(l)

(——

Blocking flows,

capacity scaling,
and much more.

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m3/2)

6(m10/7U1/7)

m?4/3+o(1)|y1/3
O(mn'/2)

O(m + n3/2)
O (m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
(”)(nl/z)
O(n1/2)

6(m2)

m1+0(1)

O(m)
O(m)
O(m)
O(m)
m+o(1)
O(m)
O(m/n/2 + n)

B(m1-1/58)

mO(l)

1

Interior point
method (IPM) +

Laplacian solver:
also min-cost.

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m3/2)

6(m10/7U1/7)

m?4/3+o(1)|y1/3
O(mn'/2)

O(m + n3/2)
O (m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
(”)(nl/z)
O(n1/2)

6(m2)

m1+0(1)

O(m)
O(m)
O(m)
O(m)
m+o(1)
O(m)
O(m/n/2 + n)

B(m1-1/58)

mO(l)

(——

IPM + Laplacian +

weight changes to
reduce iterations.

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m3/2)

6(m10/7U1/7)

m?4/3+o(1)|y1/3
O(mn'/2)

O(m + n3/2)
O (m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
(”)(nl/z)
O(n1/2)

6(m2)

m1+0(1)

O(m)
O(m)
O(m)
O(m)
m+o(1)
O(m)
O(m/n/2 + n)

B(m1-1/58)

mO(l)

1

IPM + p-norm

flows: more

sophisticated
iteration reduction

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m?372)

6(m10/7U1/7)

m4/3+0(1)U1/3
O(mn/2)

O(m + n3/2)
6(m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
O(n1/2)
O(n1/2)

G(ml/Z)

m1+0(1)

O(m)
O(m)
O(m)
O(m) IPM + generic
mi+o(1) iteration count
B(m) : reduction for all

linear programs

O(m/n/2 + n)
6(m1-1/58)

mO(l)

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m3/2)

6(m10/7U1/7)

m?4/3+o(1)|y1/3
O(mn'/2)

O(m + n3/2)
O (m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
C”)(m1/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
(”)(nl/z)
O(n1/2)

6(m2)

m1+0(1)

O(m)
O(m)
O(m)
O(m)
m+o(1)
O(m)
O(m/n/2 + n)

B(m1-1/58)

mO(l)

<

IPM + dynamic
electrical flows:

heavy-hitters,
sparsification

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW?20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m*?)
O(m?372)

6(m10/7U1/7)

m4/3+0(1)U1/3
O(mn/2)

O(m + n3/2)
6(m3/2-1/58)

m1+0(1)

O(n)
B(m?/)
O(m?/2)

C)(m3/7U1/7)
m1/3+o(1)y1/3
O(n1/2)
O(n1/2)

G(ml/Z)

m1+0(1)

O(m)

O(m)

O(m)

O(m) IPM + dynamic
m+o(1) electrical flows via
B(m) random walk +

Schur complement

O(m/n/2 + n)

6(m1-1/58)

C—

mO(l)

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO08]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m>"?)
6(m>"?)

6(m10/7U1/7)

m4/3+0(1)U1/3
O(mn/2)

O(m + n3/2)
&(m?3/2-1/58)

m1+0(1)

O(n)
B(m?”2)
B(m?”2)

O(m3/7U1/7)
m1/3+o(1)|y1/3
O(n/2)
O(n172)

G(ml/Z)

m1+0(1)

O(m)

O(m)

O(m)

O(m) IPM + dynamic
mZ1+o(1) approx. minimum-
B(m) ratio cycles, not

electric flows

O(m/n%/2 + n)

6(m1-1/58)

mo(1) —

O(.) hides poly(log(mnU)) factors

Comparison of Previous Algorithms

[GN8O, ST83]
[GR9S8]
[DSO8]

[M13, M16]
[KLS20]
[LS14]

[BLNPSSSW20,
BLLSSSW21]

[GLP21,
BGJLLPS22]

[CKLPPS22]

O(mn log n)
6(m>"?)
6(m>"?)

6(m10/7U1/7)

méa/3+o(1)y1/3
O(mn/2)

O(m + n3/2)
&(m?3/2-1/58)

m1+0(1)

O(n)
B(m?/)
B(m?/)

(N)(m3/7U1/7)
m1/3+o(1)y1/3
O(n1/2)
O(n1/2)

6(m2)

m1+0(1)

O(m/e) for (1 + €)-
approximate undirected

max-flow
B(m) [S13,KLOS14,P16,BGS22]
O(m)
O(m)
O(m) IPM + dynamic
mZ1+o(1) approx. minimum-
B(m) ratio cycles, not

electric flows

O(m/n%2 + n)

B(m1-1/58)

mo(d) —

Intuition for Improvements

 Combinatorial algorithms [GN80, ST83, GT87]
* Augmenting paths, shortest paths, blocking flows.
* Cycle cancelling by finding minimum-mean cycles.
* Work primarily with residual graphs that are directed.

* Continuous optimization [DS08, M13/16, LS14, etc.]
* Augmenting electrical flows (€, primitive) or circulations
* |IPMs allow for the electrical flows to be undirected.
* Only O(m?'/2) iterations, while a flow requires Q(m) paths.

Intuition for Improvements

 Combinatorial algorithms [GN80, ST83, GT87]
* Augmenting paths, shortest paths, blocking flows.
* Cycle cancelling by finding minimum-mean cycles.
* Work primarily with residual graphs that are directed.

* Continuous optimization [DS08, M13/16, LS14, etc.]
* Augmenting electrical flows (€, primitive) or circulations
* |IPMs allow for the electrical flows to be undirected.
* Only O(m?'/2) iterations, while a flow requires Q(m) paths.

* Our algorithm:
* Approx. minimum-ratio cycles to build flow: m1+o) jters.
* Computing min-ratio cycles is an undirected flow problem.

Intuition for Improvements

 Combinatorial algorithms [GN80, ST83, GT87]
* Augmenting paths, shortest paths, blocking flows. directed graph:
 Cycle cancelling by finding minimum-mean cycles. sesi(G)UEmG);
* Work primarily with residual graphs that are directed.

* Continuous optimization [DS08, M13/16, LS14, etc.]
* Augmenting electrical flows (€, primitive) or circulations
* |IPMs allow for the electrical flows to be undirected.
* Only O(m?'/2) iterations, while a flow requires Q(m) paths.

Minimize over cycles Cin a

* Our algorithm:
* Approx. minimum-ratio cycles to build flow: m1+o) jters.
* Computing min-ratio cycles is an undirected flow problem.

Intuition for Improvements

 Combinatorial algorithms [GN80, ST83, GT87]
* Augmenting paths, shortest paths, blocking flows.
* Cycle cancelling by finding minimum-mean cycles.
* Work primarily with residual graphs that are directed.

* Continuous optimization [DS08, M13/16, LS14, etc.]
* Augmenting electrical flows (€, primitive) or circulations
* |IPMs allow for the electrical flows to be undirected.
* Only O(m?'/2) iterations, while a flow requires Q(m) paths.

* Our algorithm:
* Approx. minimum-ratio cycles to build flow: m1+o) jters.
* Computing min-ratio cycles is an undirected flow problem.

Minimize over cycles Cin a
directed graph:
cost(C)/len(C),

Minimize over cycles Cin an
undirected graph:

Intuition for Improvements

 Combinatorial algorithms [GN80, ST83, GT87]
* Augmenting paths, shortest paths, blocking flows.
* Cycle cancelling by finding minimum-mean cycles.
* Work primarily with residual graphs that are directed.

* Continuous optimization [DS08, M13/16, LS14, etc.]
* Augmenting electrical flows (€, primitive) or circulations
* |PMs allow for the electrical flows to be undirected.

* Only O(m?'/2) iterations, while a flow requires Q(m) paths.

* Our algorithm:
* Approx. minimum-ratio cycles to build flow: m1t() jters.

* Computing min-ratio cycles is an undirected flow problem.

Minimize over cycles Cin a
directed graph:
cost(C)/len(C),

Minimize over cycles Cin an
undirected graph:

Minimize over cycles Cin an
undirected graph:

(g, C)/IILC]];.

Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS. &

Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS.

Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS.

Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS.

e Simpler version given in
[Wallacher-Zimmerman, Math. Prog. ‘92]

Dynamically Finding Approx. Min-Ratio Cycles

* (Informal theorem) Randomized data structure that supports:
* Change gradients/lengths g, L.
* Return a cycle c that m°!) approx. minimizes (g, c)/||Lc||;.
* cis representing as m°\) paths + off-tree edges on an explicit tree T.

* m°1) amortized time, works whp. against oblivious adversaries

Dynamically Finding Approx. Min-Ratio Cycles

* (Informal theorem) Randomized data structure that supports:

* Change gradients/lengths g, L.
* Return a cycle c that m°!) approx. minimizes (g, c)/||Lc||;.
* cis representing as m°\) paths + off-tree edges on an explicit tree T.

* m°1) amortized time, works whp. against oblivious adversaries

* (Informal theorem 2) Randomized data structure that supports the
above operations, but works for the (possibly non-oblivious) instances

generated during the optimization method

Dynamically Finding Approx. Min-Ratio Cycles

* (Informal theorem) Randomized data structure that supports:

* Change gradients/lengths g, L.
* Return a cycle c that m°!) approx. minimizes (g, c)/||Lc||;.
* cis representing as m°\) paths + off-tree edges on an explicit tree T.

* m°1) amortized time, works whp. against oblivious adversaries

* (Informal theorem 2) Randomized data structure that supports the
above operations, but works for the (possibly non-oblivious) instances

generated during the optimization method

Framework goes beyond the standard oblivious/adaptive split.

Talk Outline

Part 2: Using Tree

Part 1: Problem History Embeddings to Find

Approx. Min-Ratio Cycles

and Our Results

Talk Outline

Part 2: Using Tree

Embeddings to Find
Approx. Min-Ratio Cycles

Algorithm Outline

(Input): Graph G = (V, E) with cap. u, for each edge e, initial flow f©)

1.

A S

Fort=1, 2, ..., m*o) jterations:

Data structure maintains a spanning tree T on G.

Update gradients/lengths g(®, L) € RE,

Change tree T according to new gradients/lengths g(*), L(),

Find cycle c represented on T via m°l) off-tree edges/paths which
me(l-approximately minimizes (g(®, c)/HL("L)c”1 .

flt) = f(t1) 4 ¢,

Algorithm Outline

(Input): Graph G = (V, E) with cap. u, for each edge e, initial flow f©)

1.

A S

Fort=1, 2, ..., m*o) jterations:

Data structure maintains a spanning tree T on G.

Update gradients/lengths g(®, L) € RE,

Change tree T according to new gradients/lengths g(*), L(),

Find cycle c represented on T via m°l) off-tree edges/paths which
me(l-approximately minimizes (g(®, c)/HL("L)C”1 .

f(t) = f(t'l) + C. Question 1: How to Question 2: How to
decide what g(®, L(®) are? maintain the tree T and

How to decide when to find the cycle c as
update them? g®, L® change?

Potential Reduction Interior Point Method

* Add an undirected edge e*, implicitly directed from (t,s).
* Let F = the maxflow between (s, t)
* Potential function [Kar84]: min & (f), where:

circulation f

* CI)(f) = 20m log(F — fe.) — Zedges e(log(ue o fe) + log fe).

Potential Reduction Interior Point Method

* Add an undirected edge e*, implicitly directed from (t,s).
* Let F = the maxflow between (s, t)
* Potential function [Kar84]: min & (f), where:

circulation f

* CI)(f) = 20m log(F — fe.) — Zedges e(log(ue o fe) + log fe).

* Trades off routing more flow (closer to F), and not getting close to
capacity constraints.

Interior Point Method Details

* O(f) = 20m log(F — fe.) — Zedges c(log(ue — fo) + log fe).
* Goal: reduce ®(f) by moWl) per iteration.

c If ®(f) < —0(mlogm)thenF — f,, <m %),

Interior Point Method Details

* O(f) = 20m log(F — fe.) — Zedges c(log(ue — fo) + log fe).
* Goal: reduce ®(f) by moWl) per iteration.

c If ®(f) < —0(mlogm)thenF — f,, <m %),

 Gradient g = V®(f), and lengths L, = - 1_f + %

* Update f « f + nc for c approx. minimizing (g, c)/||Lc||;, scaling

Interior Point Method Details

* O(f) = 20m log(F — fe.) — Zedges c(log(ue — fo) + log fe).
* Goal: reduce ®(f) by moWl) per iteration.

c If ®(f) < —0(mlogm)thenF — f,, <m %),

 Gradient g = V®(f), and lengths L, = - 1_f + %

* Update f « f + nc for c approx. minimizing (g, c)/||Lc||;, scaling

« Reduces potential by m©@) per iteration, so m1*°(l) total iters.
* If f* is the maxflow, choosing c = f* — f is a good direction.

Approx. MRC via Random Tree Embeddings

« Warmup: return c approx. minimizing (g, ¢)/||Lc||; in O(m) time.

Approx. MRC via Random Tree Embeddings

« Warmup: return c approx. minimizing (g, ¢)/||Lc||; in O(m) time.

* Algorithm: sample “random” tree T.
* c;(e): fundamental cycle of edge e. Choose c as the best c;(e).
* Repeat O(log n) times and take the best.

Approx. MRC via Random Tree Embeddings

« Warmup: return c approx. minimizing (g, ¢)/||Lc||; in O(m) time.

* Algorithm: sample “random” tree T.
* c;(e): fundamental cycle of edge e. Choose c as the best c;(e).
* Repeat O(log n) times and take the best.

* "Random” tree: Er[len(cq(e))] < O(1)L,, i.e. fundamental cycle is
on average only O(1) times longer [AKPW95,EESTO8]

Approx. MRC via Random Tree Embeddings

« Warmup: return c approx. minimizing (g, ¢)/||Lc||; in O(m) time.

* Algorithm: sample “random” tree T.

* c;(e): fundamental cycle of edge e. Choose c as the best c;(e).
* Repeat O(log n) times and take the best.

* "Random” tree: Er[len(cq(e))] < O(1)L,, i.e. fundamental cycle is
on average only O(1) times longer [AKPW95,EESTO8]

* Let c* be the optimal minimizer of (g, c)/||Lc]||;.

* Then Er[Teqges e [co| len(er(e)) | < O(D)|ILe” |l

Diagram for Random Tree Embedding

* Zedges e |Cel len(cr(e)) < O(l)llLC*Hl whp. for some tree T,
because we sample O(log n) trees.

e Claim: some cycle c(e) is an O(1)-approx. solution

Diagram for Random Tree Embedding

* Zedges e |Cel len(cr(e)) < O(l)llLC*Hl whp. for some tree T,
because we sample O(log n) trees.

e Claim: some cycle c(e) is an O(1)-approx. solution

* Proof: total gradient over all c;-(e) is (g, c), total length is 6(1)“LC| ‘1

Diagram for Random Tree Embedding

* Zedges e lcellen(cr(e)) < O(l)llLC*Hl whp. for some tree T,
because we sample O(log n) trees.

e Claim: some cycle c(e) is an O(1)-approx. solution

* Proof: total gradient over all c;-(e) is (g, c), total length is ()(1)“Lc| ‘1

Diagram for Random Tree Embedding

* Zedges e lcellen(cr(e)) < O(l)llLC*”l whp. for some tree T,
because we sample O(log n) trees.

e Claim: some cycle c(e) is an O(1)-approx. solution

* Proof: total gradient over all c;-(e) is (g, c), total length is O(l)“LCl ‘1

O 8 8 &)

