Maximum Flow and MinimumCost Flow in Almost Linear Time

Li Chen (Georgia Tech), Yang P. Liu (Stanford University) Joint with Rasmus Kyng, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva

Talk Outline

Part 1: Problem History and Our Results

Part 2: Using Tree
Embeddings to Find
Approx. Min-Ratio Cycles

Maximum Flow Problem

- Directed graph $G=(V, E)$ source s, sink t, capacities $u_{e} \geq 0$.
- m edges, n vertices, maximum capacity U.

Maximum Flow Problem

- Directed graph $G=(V, E)$ source s, sink t, capacities $u_{e} \geq 0$.
- m edges, n vertices, maximum capacity U.

Maximum Flow Problem

- Directed graph $G=(V, E)$ source $s, \operatorname{sink} t$, capacities $u_{e} \geq 0$.
- m edges, n vertices, maximum capacity U.

Demand constraint: all
 vertices except s, t have equal incoming/outgoing flow

Total flow: number of units leaving $\mathrm{s} /$ entering t

Capacity constraint: amount of flow on edge e in [0, u_{e}]

Why Study Flows?

- Graph opt: Flows are a broad class of graph optimization problems.
- Route 1 unit from s to t while minimizing some cost given by convex functions on edges, $\sum_{\text {edges } e} \operatorname{cost}_{\mathrm{e}}\left(f_{\mathrm{e}}\right)$.
- Covers minimum-cost flow, optimal transport, isotonic regression, pnorm flows, regularized optimal transport, matrix scaling, etc.

Why Study Flows?

- Graph opt: Flows are a broad class of graph optimization problems.
- Route 1 unit from s to t while minimizing some cost given by convex functions on edges, $\sum_{\text {edges } e} \operatorname{cost}_{\mathrm{e}}\left(f_{\mathrm{e}}\right)$.
- Covers minimum-cost flow, optimal transport, isotonic regression, pnorm flows, regularized optimal transport, matrix scaling, etc.

Our results cover all the problems mentioned above.

- Direct applications: Bipartite matching, densest subgraph, GomoryHu trees / connectivity, negative-weight shortest path

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	O$\left(\mathrm{m}^{3 / 2}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	O$\left(\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}\right)$	Õ($\mathrm{m}^{3 / 7} \mathrm{U}^{1 / 7}$)	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+o(1)}$
[LS14]	O$\left(m n^{1 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	Õ(m)
[BLNPSSSW20, BLLSSSW21]	O$\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	O$\left(m^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	$\widetilde{O}\left(m^{1-1 / 58}\right)$

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	Õ($\left.\mathrm{m}^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+0(1)}$
[LS14]	O$\left(m n^{1 / 2}\right)$	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	$\widetilde{O}\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	$\widetilde{O}\left(m^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	O$\left(\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{1+o(1)}$	m^{o} (1)

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost	
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)	
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)	
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)	
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	O$\left(m^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)	Augmenting paths / blocking flows and dynamic tree data structure.
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+o(1)}$	
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)	
[BLNPSSSW20, BLLSSSW21]	$\widetilde{O}\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$	
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	O$\left(m^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$	
[CKLPPS22]	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{\circ(1)}$	

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	O$\left(m^{10 / 7} \mathrm{U}^{1 / 7}\right)$	O$\left(m^{3 / 7} U^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+0(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	O$\left(m+n^{3 / 2}\right)$	Õ($\mathrm{n}^{1 / 2}$)	O$\left(\mathrm{m} / \mathrm{n}^{1 / 2}+\mathrm{n}\right)$
$\begin{aligned} & \text { [GLP21, } \\ & \text { BGJLLPS22] } \end{aligned}$	O$\left(m^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	O$\left(\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{\circ(1)}$

Blocking flows, capacity scaling, and much more.

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	O$\left(m^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+0(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	O$\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	Õ($\left.\mathrm{m}^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{\circ(1)}$

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	O$\left(m^{10 / 7} \mathrm{U}^{1 / 7}\right)$	O$\left(m^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+o(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	$\widetilde{O}\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{aligned} & \text { [GLP21, } \\ & \text { BGJLLPS22] } \end{aligned}$	Õ($\left.\mathrm{m}^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{\circ(1)}$

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	O$\left(m^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+0(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	$\widetilde{O}\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	O$\left(m^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{\circ(1)}$

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	Õ($\mathrm{m}^{3 / 7} \mathrm{U}^{1 / 7}$)	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+0(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	$\widetilde{O}\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	Õ($\left.\mathrm{m}^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+0(1)}$	$\mathrm{m}^{1+0(1)}$	m^{o} (1)

Comparison of Previous Algorithms

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	O$\left(\mathrm{m}^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+o(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	Õ($m+\mathrm{n}^{3 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	O$\left(\mathrm{m} / \mathrm{n}^{1 / 2}+\mathrm{n}\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	Õ($\left.\mathrm{m}^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	$\widetilde{O}\left(\mathrm{~m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{0(1)}$

IPM + dynamic electrical flows via random walk + Schur complement

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	O$\left(m^{10 / 7} \mathrm{U}^{1 / 7}\right)$	$\widetilde{O}\left(m^{3 / 7} U^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+0(1)}$
[LS14]	O$\left(m n^{1 / 2}\right)$	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	O$\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\widetilde{O}\left(\mathrm{~m} / \mathrm{n}^{1 / 2}+\mathrm{n}\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	O$\left(m^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{\circ(1)}$

> IPM + dynamic approx. minimumratio cycles, not electric flows

Comparison of Previous Algorithms

	Runtime	Iterations	Amortized Cost
[GN80, ST83]	$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$	Õ(n)	Õ(m)
[GR98]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[DS08]	Õ($\mathrm{m}^{3 / 2}$)	Õ($\mathrm{m}^{1 / 2}$)	Õ(m)
[M13, M16]	Õ($\mathrm{m}^{10 / 7} \mathrm{U}^{1 / 7}$)	O$\left(\mathrm{m}^{3 / 7} \mathrm{U}^{1 / 7}\right)$	Õ(m)
[KLS20]	$\mathrm{m}^{4 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1 / 3+0(1)} \mathrm{U}^{1 / 3}$	$\mathrm{m}^{1+o(1)}$
[LS14]	Õ($m n^{1 / 2}$)	Õ($\mathrm{n}^{1 / 2}$)	Õ(m)
[BLNPSSSW20, BLLSSSW21]	$\widetilde{O}\left(m+n^{3 / 2}\right)$	O$\left(\mathrm{n}^{1 / 2}\right)$	$\tilde{O}\left(m / n^{1 / 2}+n\right)$
$\begin{gathered} \text { [GLP21, } \\ \text { BGJLLPS22] } \end{gathered}$	Õ($\left.\mathrm{m}^{3 / 2-1 / 58}\right)$	Õ($\mathrm{m}^{1 / 2}$)	Õ($\left.\mathrm{m}^{1-1 / 58}\right)$
[CKLPPS22]	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{1+o(1)}$	$\mathrm{m}^{\circ(1)}$

Intuition for Improvements

- Combinatorial algorithms [GN80, ST83, GT87]
- Augmenting paths, shortest paths, blocking flows.
- Cycle cancelling by finding minimum-mean cycles.
- Work primarily with residual graphs that are directed.
- Continuous optimization [DS08, M13/16, LS14, etc.]
- Augmenting electrical flows (ℓ_{2} primitive) or circulations
- IPMs allow for the electrical flows to be undirected.
- Only Õ($\mathrm{m}^{1 / 2}$) iterations, while a flow requires $\Omega(m)$ paths.

Intuition for Improvements

- Combinatorial algorithms [GN80, ST83, GT87]
- Augmenting paths, shortest paths, blocking flows.
- Cycle cancelling by finding minimum-mean cycles.
- Work primarily with residual graphs that are directed.
- Continuous optimization [DS08, M13/16, LS14, etc.]
- Augmenting electrical flows (ℓ_{2} primitive) or circulations
- IPMs allow for the electrical flows to be undirected.
- Only $\tilde{(}\left(\mathrm{m}^{1 / 2}\right)$ iterations, while a flow requires $\Omega(m)$ paths.
- Our algorithm:
- Approx. minimum-ratio cycles to build flow: $\mathrm{m}^{1+0(1)}$ iters.
- Computing min-ratio cycles is an undirected flow problem.

Intuition for Improvements

- Combinatorial algorithms [GN80, ST83, GT87]
- Augmenting paths, shortest paths, blocking flows.
- Cycle cancelling by finding minimum-mean cycles.

Minimize over cycles C in a
directed graph:
$\operatorname{cost}(C) / \operatorname{len}(C)$,

- Work primarily with residual graphs that are directed.
- Continuous optimization [DS08, M13/16, LS14, etc.]
- Augmenting electrical flows (ℓ_{2} primitive) or circulations
- IPMs allow for the electrical flows to be undirected.
- Only $\tilde{(}\left(\mathrm{m}^{1 / 2}\right)$ iterations, while a flow requires $\Omega(m)$ paths.

- Our algorithm:

- Approx. minimum-ratio cycles to build flow: $\mathrm{m}^{1+o(1)}$ iters.
- Computing min-ratio cycles is an undirected flow problem.

Intuition for Improvements

- Combinatorial algorithms [GN80, ST83, GT87]
- Augmenting paths, shortest paths, blocking flows.
- Cycle cancelling by finding minimum-mean cycles.

Minimize over cycles C in a directed graph: $\operatorname{cost}(C) / \operatorname{len}(C)$,

- Work primarily with residual graphs that are directed.
- Continuous optimization [DS08, M13/16, LS14, etc.]
- Augmenting electrical flows (ℓ_{2} primitive) or circulations
- IPMs allow for the electrical flows to be undirected.

Minimize over cycles C in an undirected graph:
$\langle g, C\rangle /\|L C\|_{2}$.

- Only $\tilde{O}\left(\mathrm{~m}^{1 / 2}\right)$ iterations, while a flow requires $\Omega(m)$ paths.

- Our algorithm:

- Approx. minimum-ratio cycles to build flow: $\mathrm{m}^{1+o(1)}$ iters.
- Computing min-ratio cycles is an undirected flow problem.

Intuition for Improvements

- Combinatorial algorithms [GN80, ST83, GT87]
- Augmenting paths, shortest paths, blocking flows.
- Cycle cancelling by finding minimum-mean cycles.
- Work primarily with residual graphs that are directed.
- Continuous optimization [DS08, M13/16, LS14, etc.]
- Augmenting electrical flows (ℓ_{2} primitive) or circulations
- IPMs allow for the electrical flows to be undirected.
- Only Õ($\mathrm{m}^{1 / 2}$) iterations, while a flow requires $\Omega(m)$ paths.

- Our algorithm:

- Approx. minimum-ratio cycles to build flow: $\mathrm{m}^{1+o(1)}$ iters.
- Computing min-ratio cycles is an undirected flow problem.

Minimize over cycles C in a directed graph: $\operatorname{cost}(C) / \operatorname{len}(C)$,

Minimize over cycles C in an undirected graph: $\langle g, C\rangle /\|L C\|_{2}$.

Minimize over cycles C in an undirected graph:
$\langle g, C\rangle /\|L C\|_{1}$.

Optimization Method Result: Reduction to Slowly Changing Min-Ratio Cycle Instances

- (Informal Theorem) We compute a maxflow in $\mathrm{m}^{1+\mathrm{o}(1)}$ iterations of:
- Add circulation c which is $\mathrm{m}^{0(1)}$-approx. minimizer to $\langle g, c\rangle /\|L c\|_{1}$ over circulations, for dynamically changing gradients g, lengths L.
- Coordinates of g, L change at most $\mathrm{m}^{1+\mathrm{o}(1)}$ times total $\mathrm{m}^{1+\mathrm{o}(1)}$

Optimization Method Result: Reduction to Slowly Changing Min-Ratio Cycle Instances

- (Informal Theorem) We compute a maxflow in $\mathrm{m}^{1+o(1)}$ iterations of:
- Add circulation c which is $\mathrm{m}^{\circ(1)}$-approx. minimizer to $\langle g, c\rangle /\|L c\|_{1}$ over circulations, for dynamically changing gradients g, lengths L.
- Coordinates of g, L change at most $\mathrm{m}^{1+o(1)}$ times total $\mathrm{m}^{1+o(1)}$
- Implementation: c will be represented via $\mathrm{m}^{0(1)}$ paths on a slowly changing tree T
- So: add c and detect when to change g, L using dynamic tree DS.

Optimization Method Result: Reduction to Slowly Changing Min-Ratio Cycle Instances

- (Informal Theorem) We compute a maxflow in $\mathrm{m}^{1+o(1)}$ iterations of:
- Add circulation c which is $\mathrm{m}^{0(1)}$-approx. minimizer to $\langle g, c\rangle /\|L c\|_{1}$ over circulations, for dynamically changing gradients g, lengths L.
- Coordinates of g, L change at most $\mathrm{m}^{1+o(1)}$ times total $\mathrm{m}^{1+o(1)}$
- Implementation: c will be represented via $\mathrm{m}^{0(1)}$ paths on a slowly changing tree T
- So: add c and detect when to change g, L using dynamic tree DS.

Optimization Method Result: Reduction to Slowly Changing Min-Ratio Cycle Instances

- (Informal Theorem) We compute a maxflow in $\mathrm{m}^{1+o(1)}$ iterations of:
- Add circulation c which is $\mathrm{m}^{0(1)}$-approx. minimizer to $\langle g, c\rangle /\|L c\|_{1}$ over circulations, for dynamically changing gradients g, lengths L.
- Coordinates of g, L change at most $\mathrm{m}^{1+o(1)}$ times total $\mathrm{m}^{1+o(1)}$
- Implementation: c will be represented via $\mathrm{m}^{0(1)}$ paths on a slowly changing tree T
- So: add c and detect when to change g, L using dynamic tree DS.

Optimization Method Result: Reduction to Slowly Changing Min-Ratio Cycle Instances

- (Informal Theorem) We compute a maxflow in $\mathrm{m}^{1+o(1)}$ iterations of:
- Add circulation c which is $\mathrm{m}^{\circ(1)}$-approx. minimizer to $\langle g, c\rangle /\|L c\|_{1}$ over circulations, for dynamically changing gradients g, lengths L.
- Coordinates of g, L change at most $\mathrm{m}^{1+o(1)}$ times total $\mathrm{m}^{1+o(1)}$
- Implementation: c will be represented via $\mathrm{m}^{\mathrm{o}(1)}$ paths on a slowly changing tree T
- So: add c and detect when to change g, L using dynamic tree DS.
- Simpler version given in
[Wallacher-Zimmerman, Math. Prog. '92]

Dynamically Finding Approx. Min-Ratio Cycles

- (Informal theorem) Randomized data structure that supports:
- Change gradients/lengths g, L.
- Return a cycle c that $\mathrm{m}^{\circ(1)}$ approx. minimizes $\langle g, c\rangle /\|L c\|_{1}$.
- c is representing as $\mathrm{m}^{\mathrm{o(1)}}$ paths + off-tree edges on an explicit tree T.
- $\mathrm{m}^{\circ(1)}$ amortized time, works whp. against oblivious adversaries

Dynamically Finding Approx. Min-Ratio Cycles

- (Informal theorem) Randomized data structure that supports:
- Change gradients/lengths g, L.
- Return a cycle c that $\mathrm{m}^{\circ(1)}$ approx. minimizes $\langle g, c\rangle /\|L c\|_{1}$.
- c is representing as $\mathrm{m}^{0(1)}$ paths + off-tree edges on an explicit tree T .
- $\mathrm{m}^{\circ(1)}$ amortized time, works whp. against oblivious adversaries
- (Informal theorem 2) Randomized data structure that supports the above operations, but works for the (possibly non-oblivious) instances generated during the optimization method

Dynamically Finding Approx. Min-Ratio Cycles

- (Informal theorem) Randomized data structure that supports:
- Change gradients/lengths g, L.
- Return a cycle c that $\mathrm{m}^{\circ(1)}$ approx. minimizes $\langle g, c\rangle /\|L c\|_{1}$.
- c is representing as $\mathrm{m}^{(1)}$ paths + off-tree edges on an explicit tree T .
- $\mathrm{m}^{\mathrm{o}(1)}$ amortized time, works whp. against oblivious adversaries
- (Informal theorem 2) Randomized data structure that supports the above operations, but works for the (possibly non-oblivious) instances generated during the optimization method

Framework goes beyond the standard oblivious/adaptive split.

Talk Outline

Part 1: Problem History and Our Results

Part 2: Using Tree
Embeddings to Find
Approx. Min-Ratio Cycles

Talk Outline

Algorithm Outline

(Input): Graph $G=(V, E)$ with cap. u_{e} for each edge e, initial flow $f^{(0)}$

1. For $t=1,2, \ldots, m^{1+o(1)}$ iterations:
2. Data structure maintains a spanning tree T on G .
3. Update gradients/lengths $g^{(t)}, L^{(t)} \in \mathbb{R}^{E}$.
4. Change tree T according to new gradients/lengths $g^{(t)}, L^{(t)}$.
5. Find cycle c represented on T via $\mathrm{m}^{\circ(1)}$ off-tree edges/paths which $\mathrm{m}^{\circ(1)}$-approximately minimizes $\left\langle g^{(t)}, c\right\rangle /\left\|L^{(t)} c\right\|_{1}$.
6. $f^{(t)}=f(t-1)+c$.

Algorithm Outline

(Input): Graph $G=(V, E)$ with cap. u_{e} for each edge e, initial flow $f^{(0)}$

1. For $t=1,2, \ldots, m^{1+o(1)}$ iterations:
2. Data structure maintains a spanning tree T on G .
3. Update gradients/lengths $g^{(t)}, L^{(t)} \in \mathbb{R}^{E}$.
4. Change tree T according to new gradients/lengths $g^{(t)}, L^{(t)}$.
5. Find cycle c represented on T via $\mathrm{m}^{\circ(1)}$ off-tree edges/paths which $\mathrm{m}^{\mathrm{o}(1)}$-approximately minimizes $\left\langle g^{(t)}, c\right\rangle /\left\|L^{(t)} c\right\|_{1}$.
6. $f^{(t)}=f(t-1)+c$.

Potential Reduction Interior Point Method

- Add an undirected edge e^{*}, implicitly directed from (t, s).
- Let $\mathrm{F}=$ the maxflow between (s, t)
- Potential function [Kar84]: $\min _{\text {circulation } f} \Phi(f)$, where:
- $\Phi(f)=20 m \log \left(F-f_{e^{*}}\right)-\sum_{\text {edges } e}\left(\log \left(u_{e}-f_{e}\right)+\log f_{e}\right)$.

Potential Reduction Interior Point Method

- Add an undirected edge e^{*}, implicitly directed from (t, s).
- Let $\mathrm{F}=$ the maxflow between (s, t)
- Potential function [Kar84]: $\min _{\text {circulation } f} \Phi(f)$, where:
- $\Phi(f)=20 m \log \left(F-f_{e *}\right)-\sum_{\text {edges } e}\left(\log \left(u_{e}-f_{e}\right)+\log f_{e}\right)$.
- Trades off routing more flow (closer to F), and not getting close to capacity constraints.

Interior Point Method Details

- $\Phi(f)=20 m \log \left(F-f_{e^{*}}\right)-\sum_{\text {edges } e}\left(\log \left(u_{e}-f_{e}\right)+\log f_{e}\right)$.
- Goal: reduce $\Phi(f)$ by $\mathrm{m}^{-o(1)}$ per iteration.
- If $\Phi(f) \leq-O(m \log m)$ then $F-f_{e *} \leq m^{-O(1)}$.

Interior Point Method Details

- $\Phi(f)=20 m \log \left(F-f_{e *}\right)-\sum_{\text {edges } e}\left(\log \left(u_{e}-f_{e}\right)+\log f_{e}\right)$.
- Goal: reduce $\Phi(f)$ by $\mathrm{m}^{-0(1)}$ per iteration.
- If $\Phi(f) \leq-O(m \log m)$ then $F-f_{e *} \leq m^{-O(1)}$.
- Gradient $g=\nabla \Phi(f)$, and lengths $L_{e}=\frac{1}{u_{e}-f_{e}}+\frac{1}{f_{e}}$.
- Update $f \leftarrow f+\eta c$ for c approx. minimizing $\langle g, c\rangle /\|L c\|_{1}$, scaling η

Interior Point Method Details

- $\Phi(f)=20 m \log \left(F-f_{e^{*}}\right)-\sum_{\text {edges } e}\left(\log \left(u_{e}-f_{e}\right)+\log f_{e}\right)$.
- Goal: reduce $\Phi(f)$ by $\mathrm{m}^{-0(1)}$ per iteration.
- If $\Phi(f) \leq-O(m \log m)$ then $F-f_{e *} \leq m^{-O(1)}$.
- Gradient $g=\nabla \Phi(f)$, and lengths $L_{e}=\frac{1}{u_{e}-f_{e}}+\frac{1}{f_{e}}$.
- Update $f \leftarrow f+\eta c$ for c approx. minimizing $\langle g, c\rangle /\|L c\|_{1}$, scaling η
- Reduces potential by $\mathrm{m}^{-o(1)}$ per iteration, so $\mathrm{m}^{1+o(1)}$ total iters.
- If f^{*} is the maxflow, choosing $c=f^{*}-f$ is a good direction.

Approx. MRC via Random Tree Embeddings

- Warmup: return c approx. minimizing $\langle g, c\rangle /\|L c\|_{1}$ in $\tilde{O}(m)$ time.

Approx. MRC via Random Tree Embeddings

- Warmup: return c approx. minimizing $\langle g, c\rangle /\|L c\|_{1}$ in $\tilde{O}(m)$ time.
- Algorithm: sample "random" tree T.
- $c_{T}(e)$: fundamental cycle of edge e. Choose c as the best $c_{T}(e)$.
- Repeat $\mathrm{O}(\log \mathrm{n})$ times and take the best.

Approx. MRC via Random Tree Embeddings

- Warmup: return c approx. minimizing $\langle g, c\rangle /\|L c\|_{1}$ in $\tilde{O}(m)$ time.
- Algorithm: sample "random" tree T.
- $c_{T}(e)$: fundamental cycle of edge e. Choose c as the best $c_{T}(e)$.
- Repeat $\mathrm{O}(\log \mathrm{n})$ times and take the best.
- "Random" tree: $\mathbb{E}_{T}\left[\operatorname{len}\left(\mathrm{c}_{\mathrm{T}}(\mathrm{e})\right)\right] \leq \tilde{\mathrm{O}}(1) L_{e}$, i.e. fundamental cycle is on average only Õ(1) times longer [AKPW95,EEST08]

Approx. MRC via Random Tree Embeddings

- Warmup: return c approx. minimizing $\langle g, c\rangle /\|L c\|_{1}$ in $\tilde{O}(m)$ time.
- Algorithm: sample "random" tree T.
- $c_{T}(e)$: fundamental cycle of edge e. Choose c as the best $c_{T}(e)$.
- Repeat $\mathrm{O}(\log \mathrm{n})$ times and take the best.
- "Random" tree: $\mathbb{E}_{T}\left[\operatorname{len}\left(\mathrm{c}_{\mathrm{T}}(\mathrm{e})\right)\right] \leq \tilde{\mathrm{O}}(1) L_{e}$, i.e. fundamental cycle is on average only Õ(1) times longer [AKPW95,EEST08]
- Let c^{*} be the optimal minimizer of $\langle g, c\rangle /\|L c\|_{1}$.
- Then $\mathbb{E}_{T}\left[\sum_{\text {edges } e}\left|c_{e}^{*}\right| \operatorname{len}\left(c_{T}(e)\right)\right] \leq \tilde{O}(1)\left\|L c^{*}\right\|_{1}$

Diagram for Random Tree Embedding

- $\sum_{\text {edges } e}\left|c_{e}^{*}\right| \operatorname{len}\left(c_{T}(e)\right) \leq \tilde{O}(1)\left\|L c^{*}\right\|_{1}$ whp. for some tree T, because we sample $O(\log n)$ trees.
- Claim: some cycle $c_{T}(e)$ is an $\tilde{O}(1)$-approx. solution

Diagram for Random Tree Embedding

- $\sum_{\text {edges } e}\left|c_{e}^{*}\right| \operatorname{len}\left(c_{T}(e)\right) \leq \tilde{O}(1)\left\|L c^{*}\right\|_{1}$ whp. for some tree T, because we sample $O(\log n)$ trees.
- Claim: some cycle $c_{T}(e)$ is an $\tilde{O}(1)$-approx. solution
- Proof: total gradient over all $c_{T}(e)$ is $\langle g, c\rangle$, total length is $\tilde{0}(1)\left||L c| \|_{1}\right.$

Diagram for Random Tree Embedding

- $\sum_{\text {edges } e}\left|c_{e}^{*}\right| \operatorname{len}\left(c_{T}(e)\right) \leq \tilde{O}(1)\left\|L c^{*}\right\|_{1}$ whp. for some tree T, because we sample $O(\log n)$ trees.
- Claim: some cycle $c_{T}(e)$ is an $0(1)$-approx. solution
- Proof: total gradient over all $c_{T}(e)$ is $\langle g, c\rangle$, total length is $\tilde{0}(1)||L c||_{1}$

Diagram for Random Tree Embedding

- $\sum_{\text {edges } e}\left|c_{e}^{*}\right| \operatorname{len}\left(c_{T}(e)\right) \leq \tilde{O}(1)\left\|L c^{*}\right\|_{1}$ whp. for some tree T, because we sample $O(\log n)$ trees.
- Claim: some cycle $c_{T}(e)$ is an $0(1)$-approx. solution
- Proof: total gradient over all $c_{T}(e)$ is $\langle g, c\rangle$, total length is $\tilde{O}(1)\left||L c| \|_{1}\right.$

