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Maximum Flow Problem

* Directed graph G = (V, E) source s, sink t, capacities u, = 0.
* m edges, n vertices, maximum capacity U.

Demand constraint: all
vertices except s, t have equal
incoming/outgoing flow

Goal: Route maximum
flow from s -> t.

Total flow: number of units

leaving s / entering t

Think of flow as a
vector f € RE,i.e.areal
vector on the edges

Capacity constraint: amount
of flow on edge e in [0, u,]




Why Study Flows?

* Graph opt: Flows are a broad class of graph optimization problems.
* Route 1 unit from s to t while minimizing some cost given by convex
functions on edges, X.cqges e COSte(fe)-

* Covers minimum-cost flow, optimal transport, isotonic regression, p-
norm flows, regularized optimal transport, matrix scaling, etc.



Why Study Flows?

* Graph opt: Flows are a broad class of graph optimization problems.
* Route 1 unit from s to t while minimizing some cost given by convex
functions on edges, X.cqges e COSte(fe)-

* Covers minimum-cost flow, optimal transport, isotonic regression, p-
norm flows, regularized optimal transport, matrix scaling, etc.

Our results cover all the problems mentioned above.

* Direct applications: Bipartite matching, densest subgraph, Gomory-
Hu trees / connectivity, negative-weight shortest path
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Interior point
method (IPM) +

Laplacian solver:
also min-cost.
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IPM + Laplacian +

weight changes to
reduce iterations.
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IPM + p-norm

flows: more

sophisticated
iteration reduction
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IPM + dynamic
electrical flows:

heavy-hitters,
sparsification
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* |IPMs allow for the electrical flows to be undirected.
* Only O(m?'/2) iterations, while a flow requires Q(m) paths.
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Intuition for Improvements

 Combinatorial algorithms [GN80, ST83, GT87]
* Augmenting paths, shortest paths, blocking flows.
* Cycle cancelling by finding minimum-mean cycles.
* Work primarily with residual graphs that are directed.

* Continuous optimization [DS08, M13/16, LS14, etc.]
* Augmenting electrical flows (€, primitive) or circulations
* |PMs allow for the electrical flows to be undirected.

* Only O(m?'/2) iterations, while a flow requires Q(m) paths.

* Our algorithm:
* Approx. minimum-ratio cycles to build flow: m1t() jters.

* Computing min-ratio cycles is an undirected flow problem.

Minimize over cycles Cin a
directed graph:
cost(C)/len(C),

Minimize over cycles Cin an
undirected graph:

Minimize over cycles Cin an
undirected graph:

(g, C)/IILC]];.
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over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)



Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS. &



Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS.



Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS.



Optimization Method Result: Reduction to
Slowly Changing Min-Ratio Cycle Instances

* (Informal Theorem) We compute a maxflow in m1+) jterations of:

* Add circulation ¢ which is m°)-approx. minimizer to (g, c)/||Lc||;
over circulations, for dynamically changing gradients g, lengths L.

* Coordinates of g, L change at most m1*oll) times total m+o(1)

* Implementation: c will be represented via m°1) paths on a slowly
changing tree T

* So: add c and detect when to change
g, L using dynamic tree DS.

e Simpler version given in
[Wallacher-Zimmerman, Math. Prog. ‘92]
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Dynamically Finding Approx. Min-Ratio Cycles

* (Informal theorem) Randomized data structure that supports:

* Change gradients/lengths g, L.
* Return a cycle c that m°!) approx. minimizes (g, c)/||Lc||;.
* cis representing as m°\) paths + off-tree edges on an explicit tree T.

* m°1) amortized time, works whp. against oblivious adversaries

* (Informal theorem 2) Randomized data structure that supports the
above operations, but works for the (possibly non-oblivious) instances

generated during the optimization method

Framework goes beyond the standard oblivious/adaptive split.
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Algorithm Outline

(Input): Graph G = (V, E) with cap. u, for each edge e, initial flow f©)

1.

A S

Fort=1, 2, ..., m*o) jterations:

Data structure maintains a spanning tree T on G.

Update gradients/lengths g(®, L) € RE,

Change tree T according to new gradients/lengths g(*), L(),

Find cycle c represented on T via m°l) off-tree edges/paths which
me(l-approximately minimizes (g(®, c)/HL("L)C”1 .

f(t) = f(t'l) + C. Question 1: How to Question 2: How to
decide what g(®, L(®) are? maintain the tree T and

How to decide when to find the cycle c as
update them? g®, L® change?




Potential Reduction Interior Point Method

* Add an undirected edge e*, implicitly directed from (t,s).
* Let F = the maxflow between (s, t)
* Potential function [Kar84]: min & (f), where:

circulation f

* CI)(f) = 20m log(F — fe.) — Zedges e(log(ue o fe) + log fe).
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* Add an undirected edge e*, implicitly directed from (t,s).
* Let F = the maxflow between (s, t)
* Potential function [Kar84]: min & (f), where:

circulation f

* CI)(f) = 20m log(F — fe.) — Zedges e(log(ue o fe) + log fe).

* Trades off routing more flow (closer to F), and not getting close to
capacity constraints.
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Interior Point Method Details

* O(f) = 20m log(F — fe.) — Zedges c(log(ue — fo) + log fe).
* Goal: reduce ®(f) by moWl) per iteration.

c If ®(f) < —0(mlogm)thenF — f,, <m %),

 Gradient g = V®(f), and lengths L, = - 1_f + %

* Update f « f + nc for c approx. minimizing (g, c)/||Lc||;, scaling

« Reduces potential by m©@) per iteration, so m1*°(l) total iters.
* If f* is the maxflow, choosing c = f* — f is a good direction.
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« Warmup: return c approx. minimizing (g, ¢)/||Lc||; in O(m) time.

* Algorithm: sample “random” tree T.
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« Warmup: return c approx. minimizing (g, ¢)/||Lc||; in O(m) time.

* Algorithm: sample “random” tree T.

* c;(e): fundamental cycle of edge e. Choose c as the best c;(e).
* Repeat O(log n) times and take the best.

* "Random” tree: Er[len(cq(e))] < O(1)L,, i.e. fundamental cycle is
on average only O(1) times longer [AKPW95,EESTO8]

* Let c* be the optimal minimizer of (g, c)/||Lc]||;.

* Then Er[Teqges e [co| len(er(e)) | < O(D)|ILe” |l
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