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Talk Outline

Part 1: Problem History 
and Our Results

Part 2: Using Tree 
Embeddings to Find 

Approx. Min-Ratio Cycles



Maximum Flow Problem

• Directed graph G = (V, E) source s, sink t, capacities ue≥ 0.
• m edges, n vertices, maximum capacity U.
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Goal: Route maximum 
flow from s -> t.

Think of flow as a 
vector 𝑓 ∈ ℝ!, i.e. a real 

vector on the edges
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Goal: Route maximum 
flow from s -> t.

Think of flow as a 
vector 𝑓 ∈ ℝ!, i.e. a real 

vector on the edges

Demand constraint: all 
vertices except s, t have equal 

incoming/outgoing flow

Total flow: number of units 
leaving s / entering t

Capacity constraint: amount 
of flow on edge e in [0, ue]



Why Study Flows?

• Graph opt: Flows are a broad class of graph optimization problems.
• Route 1 unit from s to t while minimizing some cost given by convex 

functions on edges, ∑!"#!$ % coste(𝑓e).
• Covers minimum-cost flow, optimal transport, isotonic regression, p-

norm flows, regularized optimal transport, matrix scaling, etc.



Why Study Flows?

• Graph opt: Flows are a broad class of graph optimization problems.
• Route 1 unit from s to t while minimizing some cost given by convex 

functions on edges, ∑!"#!$ % coste(𝑓e).
• Covers minimum-cost flow, optimal transport, isotonic regression, p-

norm flows, regularized optimal transport, matrix scaling, etc.

• Direct applications: Bipartite matching, densest subgraph, Gomory-
Hu trees / connectivity, negative-weight shortest path

Our results cover all the problems mentioned above.



Comparison of Previous Algorithms

Runtime Iterations Amortized Cost

[GN80, ST83] O(mn log n) Õ(n) Õ(m)

[GR98] Õ(m3/2) Õ(m1/2) Õ(m)

[DS08] Õ(m3/2) Õ(m1/2) Õ(m)

[M13, M16] Õ(m10/7U1/7) Õ(m3/7U1/7) Õ(m)

[KLS20] m4/3+o(1)U1/3 m1/3+o(1)U1/3 m1+o(1)

[LS14] Õ(mn1/2) Õ(n1/2) Õ(m)

[BLNPSSSW20,
BLLSSSW21]

Õ(m + n3/2) Õ(n1/2) Õ(m/n1/2 + n)

[GLP21,
BGJLLPS22]

Õ(m3/2-1/58) Õ(m1/2) Õ(m1-1/58)

Õ(.) hides poly(log(mnU)) factors
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/ blocking flows 

and dynamic tree 
data structure.

Õ(.) hides poly(log(mnU)) factors
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Õ( ⁄𝒎 𝝐) for 1 + 𝜖 -
approximate undirected

max-flow 
[S13,KLOS14,P16,BGS22]



Intuition for Improvements

• Combinatorial algorithms [GN80, ST83, GT87]
• Augmenting paths, shortest paths, blocking flows.
• Cycle cancelling by finding minimum-mean cycles.
• Work primarily with residual graphs that are directed.

• Continuous optimization [DS08, M13/16, LS14, etc.]
• Augmenting electrical flows (ℓ- primitive) or circulations
• IPMs allow for the electrical flows to be undirected.
• Only Õ(m1/2) iterations, while a flow requires Ω 𝑚 paths.
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Optimization Method Result: Reduction to 
Slowly Changing Min-Ratio Cycle Instances
• (Informal Theorem) We compute a maxflow in m1+o(1) iterations of:
• Add circulation c which is mo(1)-approx. minimizer to ⁄𝑔, 𝑐 | 𝐿𝑐 |&

over circulations, for dynamically changing gradients 𝑔, lengths 𝐿.
• Coordinates of 𝑔, 𝐿 change at most m1+o(1) times total m1+o(1)
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• So: add c and detect when to change
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Optimization Method Result: Reduction to 
Slowly Changing Min-Ratio Cycle Instances
• (Informal Theorem) We compute a maxflow in m1+o(1) iterations of:
• Add circulation c which is mo(1)-approx. minimizer to ⁄𝑔, 𝑐 | 𝐿𝑐 |&

over circulations, for dynamically changing gradients 𝑔, lengths 𝐿.
• Coordinates of 𝑔, 𝐿 change at most m1+o(1) times total m1+o(1)

• Implementation: c will be represented via mo(1) paths on a slowly 
changing tree T
• So: add c and detect when to change
𝑔, 𝐿 using dynamic tree DS.
• Simpler version given in

[Wallacher-Zimmerman, Math. Prog. ‘92]



Dynamically Finding Approx. Min-Ratio Cycles

• (Informal theorem) Randomized data structure that supports:
• Change gradients/lengths 𝑔, 𝐿.
• Return a cycle c that mo(1) approx. minimizes ⁄𝑔, 𝑐 | 𝐿𝑐 |;.
• c is representing as mo(1) paths + off-tree edges on an explicit tree T.

• mo(1) amortized time, works whp. against oblivious adversaries
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Dynamically Finding Approx. Min-Ratio Cycles

• (Informal theorem) Randomized data structure that supports:
• Change gradients/lengths 𝑔, 𝐿.
• Return a cycle c that mo(1) approx. minimizes ⁄𝑔, 𝑐 | 𝐿𝑐 |;.
• c is representing as mo(1) paths + off-tree edges on an explicit tree T.

• mo(1) amortized time, works whp. against oblivious adversaries
• (Informal theorem 2) Randomized data structure that supports the 

above operations, but works for the (possibly non-oblivious) instances 
generated during the optimization method

Framework goes beyond the standard oblivious/adaptive split.
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Algorithm Outline

(Input): Graph G = (V, E) with cap. ue for each edge e, initial flow f(0)

1. For t = 1, 2, …, m1+o(1) iterations:
2. Data structure maintains a spanning tree T on G.
3. Update gradients/lengths 𝑔((), 𝐿(() ∈ ℝ* .
4. Change tree T according to new gradients/lengths 𝑔((), 𝐿(().
5. Find cycle c represented on T via mo(1) off-tree edges/paths which 

mo(1)-approximately minimizes 2𝑔((), 𝑐 𝐿(()𝑐
&
.

6. f(t) = f(t-1) + c.



Algorithm Outline

(Input): Graph G = (V, E) with cap. ue for each edge e, initial flow f(0)

1. For t = 1, 2, …, m1+o(1) iterations:
2. Data structure maintains a spanning tree T on G.
3. Update gradients/lengths 𝑔((), 𝐿(() ∈ ℝ* .
4. Change tree T according to new gradients/lengths 𝑔((), 𝐿(().
5. Find cycle c represented on T via mo(1) off-tree edges/paths which 

mo(1)-approximately minimizes 2𝑔((), 𝑐 𝐿(()𝑐
&
.

6. f(t) = f(t-1) + c. Question 1: How to 
decide what 𝑔(%), 𝐿(%) are? 

How to decide when to 
update them?

Question 2: How to 
maintain the tree T and 

find the cycle c as 
𝑔(%), 𝐿(%) change?



Potential Reduction Interior Point Method

• Add an undirected edge e*, implicitly directed from (t,s).
• Let F = the maxflow between (s, t)
• Potential function [Kar84]: min

+,-+./01,23 4
Φ(𝑓), where:

• Φ 𝑓 = 20𝑚 log(𝐹 − 𝑓%∗) − ∑!"#!$ %(log 𝑢% − 𝑓% + log 𝑓%).
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• Potential function [Kar84]: min

+,-+./01,23 4
Φ(𝑓), where:

• Φ 𝑓 = 20𝑚 log(𝐹 − 𝑓%∗) − ∑!"#!$ %(log 𝑢% − 𝑓% + log 𝑓%).
• Trades off routing more flow (closer to F), and not getting close to 

capacity constraints.
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• Goal: reduce Φ 𝑓 by m-o(1) per iteration.
• If Φ 𝑓 ≤ −𝑂 𝑚 log𝑚 then 𝐹 − 𝑓%∗ ≤ 𝑚67(&).

• Gradient 𝑔 = ∇Φ 𝑓 , and lengths 𝐿% =
&

8!64!
+ &

4!
.

• Update 𝑓 ← 𝑓 + 𝜂𝑐 for c approx. minimizing ⁄𝑔, 𝑐 | 𝐿𝑐 |& , scaling 𝜂
• Reduces potential by m-o(1) per iteration, so m1+o(1) total iters.
• If 𝑓∗ is the maxflow, choosing 𝑐 = 𝑓∗ − 𝑓 is a good direction.
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• Algorithm: sample “random” tree T.
• cT(e): fundamental cycle of edge e. Choose c as the best cT(e).
• Repeat O(log n) times and take the best.

• ``Random” tree: 𝔼9 len(cT(e)) ≤ Õ 1 𝐿%, i.e. fundamental cycle is 
on average only Õ 1 times longer [AKPW95,EEST08]
• Let c* be the optimal minimizer of ⁄𝑔, 𝑐 | 𝐿𝑐 |&.

• Then 𝔼9 ∑!"#!$ % |𝑐%∗| len(𝑐9 𝑒 ) ≤ Õ 1 | 𝐿𝑐∗ |&
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