
CS 15-759: Homework 2

Due: 2/7/2025, 11:59 PM on Canvas

Bonus points: If you find typos in my homework or lecture notes, please email me. You will earn
+1 bonus points per typo found, and potentially more for especially egregious typos.

Hints: Hints are on the last page. It is recommended to think about the problem without hints
for a while, and then look at the hints when stuck. The problems are meant to be difficult, so there
is no shame in looking at the hints. If you make partial progress on problems (e.g., by following the
hints) you will get partial points.

Problem 1: Continuity of Convex Functions (15 Points)

This is a problem that is similar in spirit to problem 2.

Problem: Prove that if f : Rn → R is convex, then f is continuous. Use the following definitions
of convex and continuous.

Convex: A function f is convex if f(tx+ (1− t)y) ≤ t · f(x) + (1− t) · f(y) for all x, y ∈ Rn and
t ∈ [0, 1].

Continuous: A function f : Rn → R is continuous if for all x ∈ Rn and ε > 0, there is some δ > 0
depending on x and ε so that |f(y)− f(x)| ≤ ε for all y satisfying ∥y − x∥2 ≤ δ.

Problem 2: Smoothness and Strong Convexity (30 Points)

(a) Solve Exercise 6 in the Lecture Notes (equivalent notions of smoothness).

(b) Formally prove Theorem 3.5 in the Lecture Notes (gradient descent for smooth and strongly
convexity functions with respect to a PSD matrix B). Take the definition of strong convexity
and smoothness with respect to B to mean that µB ⪯ ∇2f(x) ⪯ LB.

Problem 3: Practice with Cauchy-Schwarz (20 Points)

The Cauchy-Schwarz inequality states that for any real numbers x1, . . . , xn and y1, . . . , yn that

(x1y1 + · · ·+ xnyn)
2 ≤ (x21 + · · ·+ x2n)(y

2
1 + · · ·+ y2n).

Prove the following inequalities using the Cauchy-Schwarz inequality.
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(a) For any positive real numbers a1, . . . , an > 0 and b1, . . . , bn > 0 it holds that:

n∑
i=1

a2i
bi

≥
(
∑n

i=1 ai)
2∑n

i=1 bi
.

(b) Prove for any real numbers x0, x1, . . . , xn that

(xn − x0)
2 ≤ n

n−1∑
i=0

(xi+1 − xi)
2.

Problem 4: Coordinate Descent (35 Points)

In this problem you will analyze an algorithm called coordinate descent on functions that have
different smoothness parameters in different coordinates.

Definitions: Let f : Rn → R be a convex function with minimizer x∗. Let ei ∈ Rn denote the
standard basis vectors (the vector with a 1 in coordinate i, and the rest 0). For i = 1, . . . , n let
Li ≥ 0 be coordinate smoothness parameters satisfying the following inequality:

|(∇f(x+ δei))i − (∇f(x))i| ≤ Li|δ| for all x ∈ Rn, δ ∈ R.

Here (·)i denotes the i-th coordinate of the vector.
Finally let L =

∑n
i=1 Li and for i = 1, . . . , n define pi =

Li
L .

Consider the following algorithm, for an input point x(0) ∈ Rn. For t = 0, 1, . . . , T − 1:

1. Sample a coordinate i ∈ [n] such that i is sampled with probability pi.

2. Set x(t+1) = x(t) − 1
Li
(∇f(x(t)))iei.

Prove that E[f(x(T ))] − E[f(x∗)] ≤ 2LR2

T where R = supy:f(y)≤f(x(0)) ∥y − x∥2. Note that this
definition of R is a bit different from its definition in the case of smooth gradient descent than in
the Lecture Notes.

Benefits of coordinate descent. While the number of steps of coordinate descent is often larer
than that of gradient descent, the benefit is that in each iteration, only a single coordinate changes.
Thus, even though there are more total iterations, the total time to do the iterations may be faster.
This is useful when eg. parallel complexity is not a consideration.

2



1 Hints

Problem 1: First, solve the problem when n = 1. For the n-dimensional version for n > 1, the
only new claim you need is that there is some ball around x on which the function is uniformly
upper bounded. This can be proven by applying convexity again.

Problem 2(b): If you are having trouble, look at the analysis of Richardson iteration in Section
2.1.1 of the Lecture Notes.

Problem 4: First establish the following analogue of the quadratic upper bound for smooth
functions:

f(x+ δei) ≤ f(x) + δ(∇f(x))i +
Liδ

2

2
.

Use this to upper bound E[f(x(t+1))] in terms of f(x(t)) and ∥∇f(x(t))∥22. Now conclude by copying
the analysis of smooth gradient descent in Lecture 4.

The following inequality may be useful: for a random variable X it holds that E[X2] ≥ E[X]2.
This is yet another consequence of the Cauchy-Schwarz inequality.
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